Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 82(6): 064701, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721714

RESUMO

A 10-MVA-scale resonant oscillator, powered by a pulse-forming network and switched with a pair of commutating mercury ignitrons, was developed for the MST reversed-field pinch plasma-confinement experiment. A novel feature of this circuit is its commutation mechanism, wherein each turning on of one ignitron causes a reverse voltage transient that turns off the other. Two of these oscillators are used in oscillating-field current-drive tests, in which they are capable of nearly 1MW net input power to the plasma, with resonant frequencies of a few 100 Hz for pulse durations of a few tens of ms, being precharged for immediate full amplitude. We describe the circuit and its operation, and discuss features that allow reliable, high-current commutation of the ignitrons and exploit their low switching impedance.

2.
Phys Rev Lett ; 96(3): 035003, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16486717

RESUMO

Oscillating-field current drive (OFCD) is a steady-state magnetic helicity injection method to drive net toroidal current in a plasma by applying oscillating poloidal and toroidal loop voltages. OFCD is added to standard toroidal induction to produce about 10% of the total current in the Madison symmetric torus. The dependence of the added current on the phase between the two applied voltages is measured. Maximum current does not occur at the phase of the maximum helicity injection rate. Effects of OFCD on magnetic fluctuations and dissipated power are shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA