Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Archaeometry ; 63(1): 142-155, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33510540

RESUMO

The reasons why the Western Mediterranean, especially Carthage and Rome, resisted monetization relative to the Eastern Mediterranean are still unclear. We address this question by combining lead (Pb) and silver (Ag) isotope abundances in silver coinage from the Aegean, Magna Graecia, Carthage and Roman Republic. The clear relationships observed between 109Ag/107Ag and 208Pb/206Pb reflect the mixing of silver ores or silver objects with Pb metal used for cupellation. The combined analysis of Ag and Pb isotopes reveals important information about the technology of smelting. The Greek world extracted Ag and Pb from associated ores, whereas, on the Iberian Peninsula, Carthaginians and Republican-era Romans applied Phoenician cupellation techniques and added exotic Pb to Pb-poor Ag ores. Massive Ag recupellation is observed in Rome during the Second Punic War. After defeating the Carthaginians and the Macedonians in the late second century bce, the Romans brought together the efficient, millennium-old techniques of silver extraction of the Phoenicians, who considered this metal a simple commodity, with the monetization of the economy introduced by the Greeks.

2.
Nature ; 440(7081): 199-202, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16525470

RESUMO

The Earth's mantle is isotopically heterogeneous on length scales ranging from centimetres to more than 10(4) kilometres. This heterogeneity originates from partial melt extraction and plate tectonic recycling, whereas stirring during mantle convection tends to reduce it. Here we show that mid-ocean ridge basalts from 2,000 km along the southeast Indian ridge (SEIR) display a bimodal hafnium isotopic distribution. This bimodality reveals the presence of ancient compositional striations (streaks) in the Indian Ocean upper mantle. The number density of the streaks is described by a Poisson distribution, with an average thickness of approximately 40 km. Such a distribution is anticipated for a well-stirred upper mantle, in which heterogeneity is continually introduced by plate tectonic recycling, and redistributed by viscous stretching and convective refolding.

3.
Science ; 310(5756): 1947-50, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16293721

RESUMO

The long-favored paradigm for the development of continental crust is one of progressive growth beginning at approximately 4 billion years ago (Ga). To test this hypothesis, we measured initial 176Hf/177Hf values of 4.01- to 4.37-Ga detrital zircons from Jack Hills, Western Australia. epsilonHf (deviations of 176Hf/177Hf from bulk Earth in parts per 10(4)) values show large positive and negative deviations from those of the bulk Earth. Negative values indicate the development of a Lu/Hf reservoir that is consistent with the formation of continental crust (Lu/Hf approximately 0.01), perhaps as early as 4.5 Ga. Positive epsilon(Hf) deviations require early and likely widespread depletion of the upper mantle. These results support the view that continental crust had formed by 4.4 to 4.5 Ga and was rapidly recycled into the mantle.

4.
Nature ; 418(6901): 949-52, 2002 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12198540

RESUMO

Determining the chronology for the assembly of planetary bodies in the early Solar System is essential for a complete understanding of star- and planet-formation processes. Various radionuclide chronometers (applied to meteorites) have been used to determine that basaltic lava flows on the surface of the asteroid Vesta formed within 3 million years (3 Myr) of the origin of the Solar System. Such rapid formation is broadly consistent with astronomical observations of young stellar objects, which suggest that formation of planetary systems occurs within a few million years after star formation. Some hafnium-tungsten isotope data, however, require that Vesta formed later (approximately 16 Myr after the formation of the Solar System) and that the formation of the terrestrial planets took a much longer time (62(-14)(+4504) Myr). Here we report measurements of tungsten isotope compositions and hafnium-tungsten ratios of several meteorites. Our measurements indicate that, contrary to previous results, the bulk of metal-silicate separation in the Solar System was completed within <30 Myr. These results are completely consistent with other evidence for rapid planetary formation, and are also in agreement with dynamic accretion models that predict a relatively short time (approximately 10 Myr) for the main growth stage of terrestrial planet formation.

5.
Nature ; 408(6813): 701-4, 2000 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11130068

RESUMO

Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.

6.
Nature ; 404(6777): 488-90, 2000 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-10761914

RESUMO

Modern basalts have seemingly lost all 'memory' of the primitive Earth's mantle except for an ambiguous isotopic signal observed in some rare gases. Although the Earth is expected to have reached a thermal steady state within several hundred million years of accretion, it is not known how and when the initial chemical fractionations left over from planetary accretion (and perhaps a stage involving a magma ocean) were overshadowed by fractionations imposed by modern-style geodynamics. Because of the lack of samples older than 4 Gyr, this early dynamic regime of the Earth is poorly understood. Here we compare published Hf-Nd isotope data on supracrustals from Isua, Greenland, with similar data on lunar rocks and the SNC (martian) meteorites, and show that, about 3.8 Gyr ago, the geochemical signature of the Archaean mantle was partly inherited from the initial differentiation of the Earth. The observed features seem to indicate that the planet at that time was still losing a substantial amount of primordial heat. The survival of remnants from an early layering in the modern deep mantle may account for some unexplained seismological, thermal and geochemical characteristics of the Earth as observed today.

7.
Science ; 285(5429): 879-82, 1999 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-10436154

RESUMO

Lead, oxygen, and osmium isotopic ratios measured on Hawaiian basalts can be matched with the isotopic ratios inferred for recycled ancient oceanic crust. High-precision hafnium isotopic data for lavas from several Hawaiian volcanoes identify old pelagic sediments in their source. These observations support the recycling hypothesis, whereby the mantle source of ocean island basalts includes ancient subducted oceanic crust. Hyperbolic lead-hafnium isotopic relations among Hawaiian basalts further indicate that upper mantle material is not involved in the production of hot spot basalts.

8.
Science ; 283(5406): 1303-1306, 1999 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-10037596

RESUMO

Six garnet pyroxenites from Beni Bousera, Morocco, yield a mean lutetium-hafnium age of 25 +/- 1 million years ago and show a wide range in hafnium isotope compositions (varepsilonHf = -9 to +42 25 million years ago), which exceeds that of known basalts (0 to +25). Therefore, primary melts of garnet pyroxenites cannot be the source of basalts. The upper mantle may be an aggregate of pyroxenites that were left by the melting of oceanic crust at subduction zones and peridotites that were contaminated by the percolation of melts from these pyroxenites. As a consequence, the concept of geochemical heterogeneities as passive tracers is inadequate. Measured lutetium-hafnium partitioning of natural minerals requires a reassessment of some experimental work relevant to mantle melting in the presence of garnet.

9.
Science ; 263(5153): 1593-6, 1994 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-17744788

RESUMO

The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA