Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 58: 142-149, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30905861

RESUMO

Physicochemical properties of actinides highly influence internal intake and biodistribution. An a priori knowledge of the dissolution properties of compounds involved in accidental exposure would be of great help in early dose assessment. However, this information is rarely available, leading to difficulties in interpreting excretion data from contaminated victims. We developed an in vitro acellular assay to predict in vivo bioavailability of actinides and improve medical handling of the victims. Various actinides of different physicochemical properties were used to validate the reliability of the assay to mimic in vivo behavior of the contaminants. Our assay was designed as a dynamic muticompartmental system in which an agarose gel represents the retention compartment of actinides and a dynamic phase the transfer compartment. Relevant physiological conditions were obtained by introducing various components both in the static and dynamic phases. The proposed model may provide a good prediction of in vivo behavior and could be used as a first assessment to predict the fraction of actinides that could be potentially transferred from retention compartments, as well as the fraction available to chelating drugs.


Assuntos
Amerício/farmacocinética , Bioensaio , Quelantes/farmacologia , Plutônio/farmacocinética , Urânio/farmacocinética , Disponibilidade Biológica , Líquidos Corporais/metabolismo , Osso e Ossos/metabolismo , Citratos/farmacocinética , Coloides , Pulmão/metabolismo , Nitratos/farmacocinética , Ácido Pentético/farmacologia , Piridonas/farmacologia , Exposição à Radiação , Liberação Nociva de Radioativos , Transferrina
2.
Radiat Res ; 189(5): 477-489, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528770

RESUMO

In this study, we assessed the efficacy of unilamellar 110-nm liposomes encapsulating the chelating agent diethylenetriaminepentaacetic acid (DTPA) in plutonium-exposed rats. Rats were contaminated by intravenous administration of the soluble citrate form of plutonium. The comparative effects of liposomal and free DTPA at similar doses were examined in terms of limitation of alpha activity burden in rats receiving various treatment regimens. Liposomal DTPA given at 1 h after contamination more significantly prevented the accumulation of plutonium in tissues than did free DTPA. Also, when compared to free DTPA, liposome-entrapped DTPA was more efficient when given at late times for mobilization of deposited plutonium. In addition, repeated injections of liposomal DTPA further improved the removal of plutonium compared to single injection. Various possible mechanisms of action for DTPA delivered through liposomes are discussed. The advantage of liposomal DTPA over free DTPA was undoubtedly directly and indirectly due to the better cell penetration of DTPA when loaded within liposomes, mainly in the tissues of the mononuclear phagocytic system. The decorporation induced by liposomal DTPA may result first from intracellular chelation of plutonium deposited in soft tissues, predominantly in the liver. Afterwards, the slow release of free DTPA molecules from these same tissues may enable a sustained action of DTPA, probably mainly by extracellular chelation of plutonium available on bone surfaces. In conclusion, decorporation of plutonium can be significantly improved by liposomal encapsulation of DTPA regardless of the treatment regimen applied.


Assuntos
Ácido Pentético/administração & dosagem , Ácido Pentético/metabolismo , Plutônio/isolamento & purificação , Plutônio/metabolismo , Animais , Lipossomos , Masculino , Ácido Pentético/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
3.
Metabolomics ; 12(10): 154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729830

RESUMO

INTRODUCTION: Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake. OBJECTIVES: In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L-1; duration: 9 months, n = 10). In the present study, our aim was to investigate the dose-effect pattern and identify additional potential biomarkers in urine samples. METHODS: Compared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L-1). LC-MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages. RESULTS: The data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L-1. Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score. CONCLUSION: These findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L-1.

4.
Health Phys ; 110(6): 551-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27115221

RESUMO

In case of internal contamination with plutonium materials, a treatment with diethylene triamine pentaacetic acid (DTPA) can be administered in order to reduce plutonium body burden and consequently avoid some radiation dose. DTPA intravenous injections or inhalation can start almost immediately after intake, in parallel with urinary and fecal bioassay sampling for dosimetric follow-up. However, urine and feces excretion will be significantly enhanced by the DTPA treatment. As internal dose is calculated from bioassay results, the DTPA effect on excretion has to be taken into account. A common method to correct bioassay data is to divide it by a factor representing the excretion enhancement under DTPA treatment by intravenous injection. Its value may be based on a nominal reference or observed after a break in the treatment. The aim of this study was to estimate the influence of this factor on internal dose by comparing the dose estimated using default or upper and lower values of the enhancement factor for 11 contamination cases. The observed upper and lower values of the enhancement factor were 18.7 and 63.0 for plutonium and 24.9 and 28.8 for americium. For americium, a default factor of 25 is proposed. This work demonstrates that the use of a default DTPA enhancement factor allows the determination of the magnitude of the contamination because dose estimated could vary by a factor of 2 depending on the value of the individual DTPA enhancement factor. In case of significant intake, an individual enhancement factor should be determined to obtain a more reliable dose assessment.


Assuntos
Amerício/urina , Descontaminação/métodos , Ácido Pentético/administração & dosagem , Plutônio/urina , Exposição à Radiação/análise , Protetores contra Radiação/administração & dosagem , Amerício/farmacocinética , Carga Corporal (Radioterapia) , Quelantes/administração & dosagem , Relação Dose-Resposta a Droga , Fezes/química , Humanos , Plutônio/farmacocinética , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Ann Biol Clin (Paris) ; 71(3): 269-81, 2013.
Artigo em Francês | MEDLINE | ID: mdl-23747664

RESUMO

After a review of radiometric reference methods used in radiotoxicology, analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for the workplace urinary diagnosis of internal contamination by radionuclides are evaluated. A literature review (covering the period from 2000 to 2012) is performed to identify the different applications of ICP-MS in radiotoxicology for urine analysis. The limits of detection are compared to the recommendations of the International commission on radiological protection (ICRP 78: "Individual monitoring for internal exposure of workers"). Except one publication describing the determination of strontium-90 (ß emitter), all methods using ICP-MS reported in the literature concern actinides (α emitters). For radionuclides with a radioactive period higher than 10(4) years, limits of detection are most often in compliance with ICRP publication 78 and frequently lower than radiometric methods. ICP-MS allows the specific determination of plutonium-239 + 240 isotopes which cannot be discriminated by α spectrometry. High resolution ICP-MS can also measure uranium isotopic ratios in urine for total uranium concentrations lower than 20 ng/L. The interest of ICP-MS in radiotoxicology concerns essentially the urinary measurement of long radioactive period actinides, particularly for uranium isotope ratio determination and 239 and 240 plutonium isotopes discrimination. Radiometric methods remain the most efficient for the majority of other radionuclides.


Assuntos
Doenças Profissionais/urina , Radioisótopos/urina , Espectrofotometria Atômica/métodos , Urinálise/métodos , Elementos da Série Actinoide/urina , Contaminação Radioativa de Alimentos/análise , Humanos , Limite de Detecção , Valor Preditivo dos Testes , Monitoramento de Radiação/métodos , Radioisótopos de Estrôncio/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA