Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 279: 43-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27404211

RESUMO

In this paper we study the diffusion of an SIS-type epidemics on a network under the presence of a random environment, that enters in the definition of the infection rates of the nodes. Accordingly, we model the infection rates in the form of independent stochastic processes. To analyze the problem, we apply a mean field approximation, which allows to get a stochastic differential equations for the probability of infection in each node, and classical tools about stability, which require to find suitable Lyapunov's functions. Here, we find conditions which guarantee, respectively, extinction and stochastic persistence of the epidemics. We show that there exists two regions, given in terms of the coefficients of the model, one where the system goes to extinction almost surely, and the other where it is stochastic permanent. These two regions are, unfortunately, not adjacent, as there is a gap between them, whose extension depends on the specific level of noise. In this last region, we perform numerical analysis to suggest the true behavior of the solution.


Assuntos
Doenças Transmissíveis/transmissão , Epidemias/estatística & dados numéricos , Modelos Teóricos , Processos Estocásticos , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-25122345

RESUMO

We consider a model for the diffusion of epidemics in a population that is partitioned into local communities. In particular, assuming a mean-field approximation, we analyze a continuous-time susceptible-infected-susceptible (SIS) model that has appeared recently in the literature. The probability by which an individual infects individuals in its own community is different from the probability of infecting individuals in other communities. The aim of the model, compared to the standard, nonclustered one, is to provide a compact description for the presence of communities of local infection where the epidemic process is faster compared to the rate at which it spreads across communities. Ultimately, it provides a tool to express the probability of epidemic outbreaks in the form of a metastable infection probability. In the proposed model, the spatial structure of the network is encoded by the adjacency matrix of clusters, i.e., the connections between local communities, and by the vector of the sizes of local communities. Thus, the existence of a nontrivial metastable occupancy probability is determined by an epidemic threshold which depends on the clusters' size and on the intercommunity network structure.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Surtos de Doenças , Epidemias , Modelos Teóricos , Características de Residência , Difusão , Habitação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA