Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 388(9): 947-55, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17696779

RESUMO

The majority of cellular proteins are degraded by proteasomes within the ubiquitin-proteasome ATP-dependent degradation pathway. Products of proteasomal activity are short peptides that are further hydrolysed by proteases to single amino acids. However, some peptides can escape this degradation, being selected and taken up by major histocompatibility complex (MHC) class I molecules for presentation to the immune system on the cell surface. MHC class I molecules are highly selective and specific in terms of ligand binding. Variability of peptides produced in living cells arises in a variety of ways, ensuring fast and efficient immune responses. Substitution of constitutive proteasomal subunits with immunosubunits leads to conformational changes in the substrate binding channels, resulting in a modified protein cleavage pattern and consequently in the generation of new antigenic peptides. The recently discovered event of proteasomal peptide splicing opens new horizons in the understanding of additional functions that proteasomes apparently possess. Whether peptide splicing is an occasional side product of proteasomal activity still needs to be clarified. Both gamma-interferon-induced immunoproteasomes and peptide splicing represent two significant events providing increased diversity of antigenic peptides for flexible and fine-tuned immune response.


Assuntos
Antígenos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Exteínas/fisiologia , Antígenos de Histocompatibilidade Classe I/imunologia , Inteínas/fisiologia , Peptídeo Hidrolases/imunologia , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Processamento de Proteína , Ubiquitinas/imunologia
3.
J Biol Chem ; 282(3): 1882-90, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17088246

RESUMO

beta-Barrel-shaped channels of the Omp85 family are involved in the translocation or assembly of proteins of bacterial, mitochondrial, and plastidic outer membranes. We have compared these proteins to understand the evolutionary development of the translocators. We have demonstrated that the proteins from proteobacteria and mitochondria have a pore diameter that is at least five times smaller than found for the Omp85 in cyanobacteria and plastids. This finding can explain why Omp85 from cyanobacteria (but not the homologous protein from proteobacteria) was remodeled to become the protein translocation pore after endosymbiosis. Further, the pore-forming region of the Omp85 proteins is restricted to the C terminus. Based on a phylogenetic analysis we have shown that the pore-forming domain displays a different evolutionary relationship than the N-terminal domain. In line with this, the affinity of the N-terminal domain to the C-terminal region of the Omp85 from plastids and cyanobacteria differs, even though the N-terminal domain is involved in gating of the pore in both groups. We have further shown that the N-terminal domain of nOmp85 takes part in homo-oligomerization. Thereby, the differences in the phylogeny of the two domains are explained by different functional constraints acting on the regions. The pore-forming domain, however, is further divided into two functional regions, where the distal C terminus itself forms a dimeric pore. Based on functional and phylogenetic analysis, we suggest an evolutionary scenario that explains the origin of the contemporary translocon.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Regulação Bacteriana da Expressão Gênica , Nostoc/metabolismo , Animais , Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Drosophila/química , Drosophila melanogaster , Eletrofisiologia , Proteínas de Escherichia coli/química , Evolução Molecular , Modelos Biológicos , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química
4.
J Mol Biol ; 346(5): 1207-19, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15713475

RESUMO

Protein degradation is an essential and strictly controlled process with proteasome and functionally related proteases representing its central part. Tricorn protease (TRI) has been shown to act downstream of the proteasome, degrading produced peptides. Recently, a novel large prokaryotic aminopeptidase oligomeric complex, named TET, has been identified. This complex degrades peptides of different length in organisms where TRI is not present. We determined the crystal structure of TET from the thermophilic archaeon Pyrococcus horikoshii at 1.6 A resolution in native form and in complex with the inhibitor amastatin. We demonstrate that, beside the novel tetrahedral oligomerisation pattern, TET possesses a unique mechanism of substrate attraction and orientation. TET sequentially degrades peptides produced by the proteasome to single amino acids. Furthermore, we reconstituted in vitro the minimal protein degradation system from initial unfolding of labelled protein substrates, up to release of free amino acids. We propose that TET and TRI act as functional analogues in different organisms, with TET being more widely distributed. Thus, TET and TRI represent two evolutionarily diverged pathways of peptide degradation in prokaryotes.


Assuntos
Aminopeptidases/química , Endopeptidases , Peptídeos/metabolismo , Pyrococcus horikoshii/enzimologia , Aminopeptidases/metabolismo , Sítios de Ligação , Evolução Biológica , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Células Procarióticas/metabolismo , Inibidores de Proteases/metabolismo , Complexo de Endopeptidases do Proteassoma , Conformação Proteica , Dobramento de Proteína , Transdução de Sinais
5.
Cell ; 113(4): 435-44, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12757705

RESUMO

C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tripartite domain structure.


Assuntos
Alanina/análogos & derivados , Enzimas/isolamento & purificação , Regulação Enzimológica da Expressão Gênica/genética , Glicina/análogos & derivados , Glicina/genética , Mutação/genética , Esfingolipidoses/enzimologia , Esfingolipidoses/genética , Sulfatases/deficiência , Sulfatases/genética , Alanina/biossíntese , Alanina/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Bioensaio , Células CHO , Bovinos , Cromossomos Humanos Par 3/genética , Cricetinae , DNA Complementar/análise , DNA Complementar/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Enzimas/genética , Vetores Genéticos , Glicina/biossíntese , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA