Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 19: 100863, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780317

RESUMO

Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions.

2.
Front Microbiol ; 14: 1120659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910180

RESUMO

The fermentation is the main process to form the unique flavor and health benefits of dark tea. Numerous studies have indicated that the microorganisms play a significant part in the fermentation process of dark tea. Dark tea has the quality of "The unique flavor grows over time," but unscientific storage of dark tea might cause infestation of harmful microorganisms, thereby resulting in the remaining of fungi toxins. Mycotoxins are regarded as the main contributor to the quality of dark tea, and its potential mycotoxin risk has attracted people's attention. This study reviews common and potential mycotoxins in dark tea and discusses the possible types of masked mycotoxins in dark tea. A summary of the potential risks of mycotoxins and masked mycotoxins in dark tea is presented, intending to provide a reference for the prevention and risk assessment of harmful fungi in dark tea.

3.
Front Microbiol ; 14: 1124546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846747

RESUMO

Instant dark teas (IDTs) were individually liquid-state fermented using the fungi Aspergillus cristatus, Aspergillus niger, and Aspergillus tubingensis. To understand how the chemical constituents of IDTs were affected by the fungi, samples were collected and measured by liquid chromatography-tandem mass-tandem mass spectrometry (LC-MS/MS). Untargeted metabolomics analysis revealed that 1,380 chemical constituents were identified in positive and negative ion modes, and 858 kinds of chemical components were differential metabolites. Through cluster analysis, IDTs were different from the blank control, and their chemical constituents mostly included carboxylic acids and their derivatives, flavonoids, organooxygen compounds, and fatty acyls. And the metabolites of IDTs fermented by A. niger and A. tubingensis had a high degree of similarity and were classified into one category, which showed that the fungus used to ferment is critical to the formation of certain qualities of IDTs. The biosynthesis of flavonoids and phenylpropanoid, which involved nine different metabolites such as p-coumarate, p-coumaroyl-CoA, caffeate, ferulate, naringenin, kaempferol, leucocyanidin, cyanidin, and (-)-epicatechin, were significant pathways influencing the quality formation of IDTs. Quantification analysis indicated that the A. tubingensis fermented-IDT had the highest content of theaflavin, theabrownin, and caffeine, while the A. cristatus fermented-IDT had the lowest content of theabrownin, and caffeine. Overall, the results provided new insights into the relationship between the quality formation of IDTs and the microorganisms used in liquid-state fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA