Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0282358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36821556

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0059836.].

2.
Am J Pathol ; 192(6): 887-903, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390317

RESUMO

Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.


Assuntos
Neoplasias Hepáticas , Xenobióticos , Animais , Proliferação de Células , Receptor Constitutivo de Androstano , Hepatócitos/metabolismo , Hipertrofia/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Linfócitos , Camundongos , Proteínas dos Microfilamentos , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Proteínas de Sinalização YAP
4.
Hepatology ; 70(5): 1546-1563, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31063640

RESUMO

Epidermal growth factor receptor (EGFR) is a critical regulator of hepatocyte proliferation and liver regeneration. Our recent work indicated that EGFR can also regulate lipid metabolism during liver regeneration after partial hepatectomy. Based on these findings, we investigated the role of EGFR in a mouse model of nonalcoholic fatty liver disease (NAFLD) using a pharmacological inhibition strategy. C57BL6/J mice were fed a chow diet or a fast-food diet (FFD) with or without EGFR inhibitor (canertinib) for 2 months. EGFR inhibition completely prevented development of steatosis and liver injury in this model. In order to study if EGFR inhibition can reverse NAFLD progression, mice were fed the FFD for 5 months, with or without canertinib treatment for the last 5 weeks of the study. EGFR inhibition remarkably decreased steatosis, liver injury, and fibrosis and improved glucose tolerance. Microarray analysis revealed that ~40% of genes altered by the FFD were differentially expressed after EGFR inhibition and, thus, are potentially regulated by EGFR. Several genes and enzymes related to lipid metabolism (particularly fatty acid synthesis and lipolysis), which were disrupted by the FFD, were found to be modulated by EGFR. Several crucial transcription factors that play a central role in regulating these lipid metabolism genes during NAFLD, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBF1), carbohydrate-responsive element-binding protein, and hepatocyte nuclear factor 4 alpha, were also found to be modulated by EGFR. In fact, chromatin immunoprecipitation analysis revealed that PPARγ binding to several crucial lipid metabolism genes (fatty acid synthase, stearoyl-coenzyme A desaturase 1, and perilipin 2) was drastically reduced by EGFR inhibition. Further upstream, EGFR inhibition suppressed AKT signaling, which is known to control these transcription factors, including PPARγ and SREBF1, in NAFLD models. Lastly, the effect of EGFR in FFD-induced fatty-liver phenotype was not shared by receptor tyrosine kinase MET, investigated using MET knockout mice. Conclusion: Our study revealed a role of EGFR in NAFLD and the potential of EGFR inhibition as a treatment strategy for NAFLD.


Assuntos
Receptores ErbB/antagonistas & inibidores , Fast Foods , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Hepatology ; 69(4): 1702-1718, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29888801

RESUMO

TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and epidermal growth factor receptor (EGFR), are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved using MET knockout (KO) mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFR inhibitor (EGFRi)], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP-induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in hepatocyte nuclear factor 4 alpha expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed the vast majority (~40%) of TCPOBOP-dependent genes primarily related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.


Assuntos
Receptores ErbB/metabolismo , Hepatomegalia/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Receptor Constitutivo de Androstano , Feminino , Proteína Forkhead Box M1/metabolismo , Perfilação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/fisiologia , Hepatomegalia/induzido quimicamente , Via de Sinalização Hippo , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas , Receptores Citoplasmáticos e Nucleares/agonistas , Transdução de Sinais
6.
Am J Pathol ; 188(9): 2074-2086, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30126548

RESUMO

The gene leukocyte-specific protein-1 (LSP1), encodes an F-actin binding protein that directly interacts with the mitogen-activated protein kinase pathway. LSP1 has copy number variations in 52% of human hepatocellular carcinoma (HCC). LSP1 suppresses proliferation and migration in hepatocytes. LSP1 binds to the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein/extracellular signal-regulated kinase (ERK)/ERK signaling cassette, the target for sorafenib, a crucial chemotherapeutic agent for HCC. This study addresses the role of LSP1 in liver regeneration and sensitivity to sorafenib in normal and neoplastic hepatocytes. Two mouse models, an Lsp1 global knockout (LSP1KO) and a hepatocyte-specific Lsp1 transgenic (LSP1TG) mouse, were used. After two-thirds hepatectomy (PHx), LSP1KO mice displayed increased proliferation and ERK activation, whereas LSP1TG mice displayed suppressed proliferation and decreased ERK activation. LSP1KO hepatocytes cultured without growth factors exhibited increased proliferation, whereas LSP1TG hepatocytes showed decreased proliferation. Rat and human hepatoma cells expressing Lsp1 shRNA displayed increased sensitivity to sorafenib, as evidenced by decreased cell numbers and phosphorylated ERK expression compared with control. LSP1 KO mice treated with sorafenib before PHx displayed decreased hepatocyte proliferation. Our data show that loss of LSP1 function, observed in HCC, leads to increased sensitivity to sorafenib treatment and enhanced hepatocellular proliferation after PHx in vivo and in cultured cells.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Resistência a Medicamentos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Sorafenibe/farmacologia , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Regeneração Hepática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Fosforilação
7.
Am J Pathol ; 188(10): 2223-2235, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031724

RESUMO

MET and epidermal growth factor receptor (EGFR) tyrosine kinases are crucial for liver regeneration and normal hepatocyte function. Recently, we demonstrated that in mice, combined inhibition of these two signaling pathways abolished liver regeneration after hepatectomy, with subsequent hepatic failure and death at 15 to 18 days after resection. Morbidity was associated with distinct and specific alterations in important downstream signaling pathways that led to decreased hepatocyte volume, reduced proliferation, and shutdown of many essential hepatocyte functions, such as fatty acid synthesis, urea cycle, and mitochondrial functions. Herein, we explore the role of MET and EGFR signaling in resting mouse livers that are not subjected to hepatectomy. Mice with combined disruption of MET and EGFR signaling were noticeably sick by 10 days and died at 12 to 14 days. Mice with combined disruption of MET and EGFR signaling mice showed decreased liver/body weight ratios, increased apoptosis in nonparenchymal cells, impaired liver metabolic functions, and activation of distinct downstream signaling pathways related to inflammation, cell death, and survival. The present study demonstrates that, in addition to controlling the regenerative response, MET and EGFR synergistically control baseline liver homeostasis in normal mice in such a way that their combined disruption leads to liver failure and death.


Assuntos
Receptores ErbB/antagonistas & inibidores , Falência Hepática/etiologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Proliferação de Células/fisiologia , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Hepatócitos/fisiologia , Falência Hepática/mortalidade , Regeneração Hepática/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos Transgênicos , Morfolinas/farmacologia , Tamanho do Órgão/fisiologia , Inibidores de Proteínas Quinases/farmacologia
8.
Gene Expr ; 18(1): 51-62, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29212575

RESUMO

Hepatocyte to biliary transdifferentiation has been documented in various models of bile duct injury. In this process, mature hepatocytes transform into mature biliary epithelial cells by acquiring biliary phenotypic markers. Several signaling pathways including PI3 kinase, Notch, Hes1, Sox9, and Hippo are shown to be involved in the process. However, whether Oct4 is involved in hepatocyte to biliary transdifferentiation is unknown. We investigated the role of Oct4 in hepatocyte to biliary transdifferentiation utilizing an in vitro organoid culture system as a model of transdifferentiation. Oct4 was inhibited using adenovirus containing Oct4 shRNA. Hepatocyte-specific HNF-4α and biliary-specific HNF-1ß and CK19 expression were assessed to gauge the extent of transdifferentiation. Oct4 was induced during hepatocyte to biliary transdifferentiation. Oct4 inhibition significantly downregulated the appearance of biliary cells from hepatocytes. This was accompanied by a significant downregulation of signaling pathways including Notch, Sox9, and Hippo. Our findings suggest that Oct4 is crucial for hepatocyte to biliary transdifferentiation and maturation and that it acts upstream of Notch, Sox9, and Hippo signaling in this model. This finding identifies new signaling through Oct4 in plasticity between hepatocytes and biliary epithelial cells, which can be potentially utilized to identify new strategies in chronic biliary diseases.


Assuntos
Transdiferenciação Celular , Hepatócitos/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Ductos Biliares/citologia , Células Cultivadas , Fatores Nucleares de Hepatócito/genética , Fatores Nucleares de Hepatócito/metabolismo , Hepatócitos/citologia , Masculino , Fator 3 de Transcrição de Octâmero/genética , Organoides/citologia , Organoides/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
9.
Hepatology ; 64(5): 1711-1724, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397846

RESUMO

Receptor tyrosine kinases MET and epidermal growth factor receptor (EGFR) are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also participate in the early part of the process. Regeneration employs effective redundancy schemes to compensate for the missing signals. Elimination of any single extracellular signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling (MET knockout + EGFR-inhibited mice) abolishes liver regeneration, prevents restoration of liver mass, and leads to liver decompensation. MET knockout or simply EGFR-inhibited mice had distinct and signaling-specific alterations in Ser/Thr phosphorylation of mammalian target of rapamycin, AKT, extracellular signal-regulated kinases 1/2, phosphatase and tensin homolog, adenosine monophosphate-activated protein kinase α, etc. In the combined MET and EGFR signaling elimination of MET knockout + EGFR-inhibited mice, however, alterations dependent on either MET or EGFR combined to create shutdown of many programs vital to hepatocytes. These included decrease in expression of enzymes related to fatty acid metabolism, urea cycle, cell replication, and mitochondrial functions and increase in expression of glycolysis enzymes. There was, however, increased expression of genes of plasma proteins. Hepatocyte average volume decreased to 35% of control, with a proportional decrease in the dimensions of the hepatic lobules. Mice died at 15-18 days after hepatectomy with ascites, increased plasma ammonia, and very small livers. CONCLUSION: MET and EGFR separately control many nonoverlapping signaling endpoints, allowing for compensation when only one of the signals is blocked, though the combined elimination of the signals is not tolerated; the results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation. (Hepatology 2016;64:1711-1724).


Assuntos
Receptores ErbB/fisiologia , Falência Hepática/etiologia , Regeneração Hepática/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Animais , Masculino , Camundongos , Transdução de Sinais
10.
Lab Invest ; 95(10): 1117-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237273

RESUMO

Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis.


Assuntos
Fibrinolíticos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/agonistas , Miofibroblastos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Tetracloreto de Carbono/antagonistas & inibidores , Tetracloreto de Carbono/toxicidade , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/patologia , Linhagem Celular Transformada , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Fibrinolíticos/metabolismo , Fibrinolíticos/uso terapêutico , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Solventes/química , Solventes/toxicidade , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tecidual/uso terapêutico
11.
Hepatology ; 61(2): 537-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25234543

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is the most commonly diagnosed form of liver cancer with high morbidity and mortality. Copy number variation (CNV) analysis of human HCC revealed that leukocyte-specific protein 1 (LSP1) had the highest number of cases with CNV. LSP1, a F-actin-binding protein, is expressed in hematopoietic cells and interacts with kinase suppressor of Ras (KSR), a scaffold for the extracellular signal-related kinase/mitogen-activated protein kinase pathway. Expression of LSP1 in liver, and its role in normal hepatocellular function and carcinogenesis, remains unknown. Therefore, LSP1 messenger RNA and protein levels were analyzed in normal hepatocytes in culture, rat liver following partial hepatectomy (PHx), and hepatoma cell lines. In culture and after PHx, LSP1 increased after the termination of hepatocyte proliferation. To investigate LSP1 function in HCC, short hairpin RNA was utilized to stably knock down LSP1 expression in the JM1 rat hepatoma cell line. Loss of LSP1 in JM1 cells resulted in dramatic up-regulation of cyclin D1 and phosphorylated ERK2, increased cell proliferation, and migration. Coimmunoprecipitation and immunofluorescence analysis displayed an interaction and colocalization between LSP1, KSR, and F-actin in JM1 cells and liver during regeneration. Conversely, expression of LSP1 in the JM2 rat hepatoma cell line led to decreased proliferation. Enhanced expression of LSP1 in mouse hepatocytes during liver regeneration after injection of an LSP1 expression plasmid also led to decreased hepatocyte proliferation. CONCLUSION: LSP1 is expressed in normal hepatocytes and liver after PHx after termination of proliferation. In rat hepatoma cell lines and mouse liver in vivo, LSP1 functions as a negative regulator of proliferation and migration. Given the high frequency of LSP1 CNV in human HCC, LSP1 may be a novel target for diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/fisiologia , Neoplasias Hepáticas/metabolismo , Regeneração Hepática , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos , Metástase Neoplásica , Proteínas Quinases/metabolismo , Ratos Endogâmicos F344
12.
PLoS One ; 9(4): e96053, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24763697

RESUMO

Exogenous interleukin 6 (IL-6), synthesized at the initiation of the acute phase response, is considered responsible for signaling hepatocytes to produce acute phase proteins. It is widely posited that IL-6 is either delivered to the liver in an endocrine fashion from immune cells at the site of injury, or alternatively, in a paracrine manner by hepatic immune cells within the liver. A recent publication showed there was a muted IL-6 response in lipopolysaccharide (LPS)-injured mice when nuclear NFκB was specifically inactivated in the hepatocytes. This indicates hepatocellular signaling is also involved in regulating the acute phase production of IL-6. Herein, we present extensive in vitro and in vivo evidence that normal hepatocytes are directly induced to synthesize IL-6 mRNAs and protein by challenge with LPS, a bacterial hepatotoxin, and by HGF, an important regulator of hepatic homeostasis. As the IL-6 receptor is found on the hepatocyte, these results reveal that induction of the acute phase response can be regulated in an autocrine as well as endocrine/paracrine fashion. Further, herein we provide data indicating that following partial hepatectomy (PHx), HGF differentially regulates IL-6 production in hepatocytes (induces) versus immune cells (suppresses), signifying disparate regulation of the cell sources involved in IL-6 production is a biologically relevant mechanism that has previously been overlooked. These findings have wide ranging ramifications regarding how we currently interpret a variety of in vivo and in vitro biological models involving elements of IL-6 signaling and the hepatic acute phase response.


Assuntos
Hepatócitos/metabolismo , Interleucina-6/biossíntese , Animais , Comunicação Autócrina , Células Cultivadas , Meios de Cultura Livres de Soro , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344
13.
PLoS One ; 9(4): e95487, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743506

RESUMO

Chemically defined serum-free media for rat hepatocytes have been useful in identifying EGFR ligands and HGF/MET signaling as direct mitogenic factors for rat hepatocytes. The absence of such media for mouse hepatocytes has prevented screening for discovery of such mitogens for mouse hepatocytes. We present results obtained by designing such a chemically defined medium for mouse hepatocytes and demonstrate that in addition to EGFR ligands and HGF, the growth factors FGF1 and FGF2 are also important mitogenic factors for mouse hepatocytes. Smaller mitogenic response was also noticed for PDGF AB. Mouse hepatocytes are more likely to enter into spontaneous proliferation in primary culture due to activation of cell cycle pathways resulting from collagenase perfusion. These results demonstrate unanticipated fundamental differences in growth biology of hepatocytes between the two rodent species.


Assuntos
Meios de Cultura Livres de Soro/farmacologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hepatócitos/metabolismo , Masculino , Camundongos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Endogâmicos F344
14.
PLoS One ; 8(9): e74625, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058607

RESUMO

Particularly interesting new cysteine-histidine-rich protein (PINCH) protein is part of the ternary complex known as the IPP (integrin linked kinase (ILK)-PINCH-Parvin-α) complex. PINCH itself binds to ILK and to another protein known as Rsu-1 (Ras suppressor 1). We generated PINCH 1 and PINCH 2 Double knockout mice (referred as PINCH DKO mice). PINCH2 elimination was systemic whereas PINCH1 elimination was targeted to hepatocytes. The genetically modified mice were born normal. The mice were sacrificed at different ages after birth. Soon after birth, they developed abnormal hepatic histology characterized by disorderly hepatic plates, increased proliferation of hepatocytes and biliary cells and increased deposition of extracellular matrix. After a sustained and prolonged proliferation of all epithelial components, proliferation subsided and final liver weight by the end of 30 weeks in livers with PINCH DKO deficient hepatocytes was 40% larger than the control mice. The livers of the PINCH DKO mice were also very stiff due to increased ECM deposition throughout the liver, with no observed nodularity. Mice developed liver cancer by one year. These mice regenerated normally when subjected to 70% partial hepatectomy and did not show any termination defect. Ras suppressor 1 (Rsu-1) protein, the binding partner of PINCH is frequently deleted in human liver cancers. Rsu-1 expression is dramatically decreased in PINCH DKO mouse livers. Increased expression of Rsu-1 suppressed cell proliferation and migration in HCC cell lines. These changes were brought about not by affecting activation of Ras (as its name suggests) but by suppression of Ras downstream signaling via RhoGTPase proteins. In conclusion, our studies suggest that removal of PINCH results in enlargement of liver and tumorigenesis. Decreased levels of Rsu-1, a partner for PINCH and a protein often deleted in human liver cancer, may play an important role in the development of the observed phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas com Domínio LIM/metabolismo , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Apoptose , Peso Corporal , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação para Baixo , Matriz Extracelular/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Cinética , Proteínas com Domínio LIM/deficiência , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regeneração Hepática , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Modelos Biológicos , Tamanho do Órgão , Ratos , Transdução de Sinais , Regulação para Cima
15.
Am J Pathol ; 183(1): 153-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23665349

RESUMO

Previous studies from our laboratory have found glypican 3 (GPC3) as a negative regulator of growth. CD81 was found to be a binding partner for GPC3, and its expression and co-localization with GPC3 increased at the end of hepatocyte proliferation. However, the mechanisms through which these two molecules might regulate liver regeneration are not known. We tested the hypothesis that GPC3 down-regulates the hedgehog (HH) signaling pathway by competing with patched-1 for HH binding. We found decreased GPC3-Indian HH binding at peak proliferation in mice followed by increase in glioblastoma 1 protein (effector of HH signaling). We performed a yeast two-hybrid assay and identified hematopoietically expressed homeobox (Hhex, a known transcriptional repressor) as a binding partner for CD81. We tested the hypothesis that Hhex binding to CD81 keeps it outside the nucleus. However, when GPC3 binds to CD81, CD81-Hhex binding decreases, resulting in nuclear translocation of Hhex and transcriptional repression. In support of this, we found decreased GPC3-CD81 binding at hepatocyte proliferation peak, increased CD81-Hhex binding, and decreased nuclear Hhex. GPC3 transgenic mice were used as an additional tool to test our hypothesis. Overall, our data suggest that GPC3 down-regulates cell proliferation by binding to HH and down-regulating the HH signaling pathway and binding with CD81, thus making it unavailable to bind to Hhex and causing its nuclear translocation.


Assuntos
Proliferação de Células , Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Hepatócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Regeneração Hepática/fisiologia , Tetraspanina 28/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Regulação para Baixo , Hepatócitos/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos
16.
Liver Int ; 33(7): 1044-55, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23552057

RESUMO

BACKGROUND: Hepatic non-parenchymal cells (NPCs), encompassing hepatic stellate cells (HSCs), macrophages and endothelial cells, synthesize new hepatocyte growth factor (HGF) during liver regeneration (LR), and also play an important function in matrix production at the end of regeneration. AIMS: The aim of this study was to determine whether ablating NPCs either during hepatocyte proliferation or during matrix resynthesis will have any effect on LR. METHODS: Rats were injected with either gliotoxin (which induces NPC apoptosis) or vehicle control at various stages during partial hepatectomy (PH). NPCs and hepatocytes were also treated in vitro with gliotoxin. RESULTS: Proliferating cells were abundant in control livers 24 h after PH, while in gliotoxin-treated rats, mitosis was absent, apoptotic NPCs were apparent and HGF was decreased. In vitro studies demonstrated a > 50% decrease in cell viability in NPC cultures, while hepatocyte viability and proliferation were unaffected. Chronic elimination of NPCs over a period of 5 days after PH led to increased desmin-positive HSCs and fewer alpha smooth muscle actin-expressing HSCs. Finally, there was continued proliferation of hepatocytes and decreased collagen I and TGF-ß when HSCs, the matrix-producing NPCs, were ablated during later stages of LR. CONCLUSIONS: Ablation of NPCs at early time points after PH interferes with liver regeneration, while their ablation at late stages causes impairment in the termination of LR, demonstrating a time-dependent regulatory role of NPCs in the regenerative process.


Assuntos
Gliotoxina/toxicidade , Fator de Crescimento de Hepatócito/biossíntese , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Animais , Apoptose/efeitos dos fármacos , Benzotiazóis , Western Blotting , Primers do DNA/genética , Diaminas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hepatectomia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Compostos Orgânicos , Quinolinas , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
17.
PLoS One ; 8(3): e59836, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527275

RESUMO

Hepatocyte growth factor (HGF) has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ER(T) transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70-80%) of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH), which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4)-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth.


Assuntos
Fator de Crescimento de Hepatócito/deficiência , Fator de Crescimento de Hepatócito/metabolismo , Regeneração Hepática/fisiologia , Animais , Western Blotting , Tetracloreto de Carbono , Primers do DNA/genética , Hepatectomia , Células Estreladas do Fígado/metabolismo , Fator de Crescimento de Hepatócito/genética , Imuno-Histoquímica , Imunoprecipitação , Regeneração Hepática/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Hepatology ; 54(4): 1360-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21739467

RESUMO

UNLABELLED: Reprogramming factors have been used to induce pluripotent stem cells as an alternative to somatic cell nuclear transfer technology in studies targeting disease models and regenerative medicine. The neuronal repressor RE-1 silencing transcription factor (REST) maintains self-renewal and pluripotency in mouse embryonic stem cells by maintaining the expression of Oct3/4, Nanog, and cMyc. We report that primary hepatocytes express REST and most of the reprogramming factors in culture. Their expression is up-regulated by hepatocyte growth factor (HGF) and epidermal growth factor (EGF). REST inhibition results in down-regulation of reprogramming factor expression, increased apoptosis, decreased proliferation, and cell death. The reprogramming factors are also up-regulated after 70% partial hepatectomy in vivo. CONCLUSION: These findings show that genes inducing the iPS phenotype, even though expressed at lower levels than embryonic stem cells, nonetheless are associated with control of apoptosis and cell proliferation in hepatocytes in culture and may play a role in such processes during liver regeneration.


Assuntos
Apoptose/genética , Hepatócitos/citologia , Regeneração Hepática/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Análise de Variância , Animais , Western Blotting , Proliferação de Células , Sobrevivência Celular/genética , Células Cultivadas , Proteínas Correpressoras , DNA Complementar/biossíntese , Modelos Animais de Doenças , Hepatócitos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , RNA/análise , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência , Proteínas Repressoras/metabolismo
19.
Hepatology ; 54(2): 620-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21574168

RESUMO

UNLABELLED: Glypican 3 (GPC3) is a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. Loss-of-function mutations of GPC3 cause Simpson-Golabi-Behmel syndrome characterized by overgrowth of multiple organs, including liver. Our previous study showed that in GPC3 transgenic (TG) mice, hepatocyte-targeted overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration after partial hepatectomy and alters gene expression profiles and potential cell cycle-related proteins. This study investigates the role of GPC3 in hepatocyte proliferation and hepatomegaly induced by the xenobiotic mitogens phenobarbital (PB) and TCPOBOP (1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene). Wildtype (WT) and GPC3 TG mice were given 0.1% PB in drinking water for 10 days or a single dose of TCPOBOP (3 mg/kg) by oral gavage. At day 5 the WT mice showed a 2.2- and 3.0-fold increase in liver weight, whereas the GPC3 TG mice showed a 1.3- and 1.6-fold increase in liver weight after PB and TCPOBOP administration, respectively. There was a significant suppression of proliferative response in the GPC3 TG mice, as assessed by percent of Ki67-positive hepatocyte nuclei. Moreover, gene array analysis showed a panel of changes in the gene expression profile of TG mice, both before and after administration of the xenobiotic mitogens. Expression of cell cycle-related genes in the TG mice was also decreased compared to the WT mice. CONCLUSION: Our results indicate that in GPC3 TG mice, hepatocyte-targeted overexpression of GPC3 plays an important role for regulation of liver size and termination of hepatocyte proliferation induced by the xenobiotic mitogens PB and TCPOBOP, comparable to the effects seen in the GPC3 TG mice during liver regeneration after partial hepatectomy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glipicanas/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Hepatomegalia/genética , Fenobarbital/farmacologia , Piridinas/farmacologia , Animais , Regulação da Expressão Gênica , Genes cdc , Hepatomegalia/induzido quimicamente , Camundongos , Camundongos Transgênicos
20.
Hepatology ; 53(2): 587-95, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21274879

RESUMO

UNLABELLED: TCBOPOP (1,4-bis [2-(3,5-dichaloropyridyloxy)] benzene) an agonist of the constitutive androstane receptor (CAR), produces rapid hepatocyte hyperplasia and hepatomegaly in the absence of hepatic injury. In this study we demonstrate that integrin-linked kinase (ILK), which is involved in transmission of the extracellular matrix (ECM) signaling by way of integrin receptors, plays an important role in regulating TCPOBOP-induced proliferation of hepatocytes and hepatomegaly. Hepatocyte-specific ILK knockout mice (ILK/liver-/- mice) and wildtype mice (WT) were given a single dose of TCPOBOP (3 mg/kg) by oral gavage. Mice were sacrificed at days 1, 2, 5, and 7 after TCPOBOP administration. WT mice showed maximum proliferation on days 1 and 2, which came back to baseline levels by days 5 and 7 after TCPOBOP administration. The ILK/liver-/- mice, on the other hand, showed a prolonged and a sustained proliferative response as evident by an increased number of proliferative cell nuclear antigen assay (PCNA)-positive cells even at days 5 and 7 after TCPOBOP administration. At day 7 the WT mice showed close to a 2.5-fold increase in liver weight, whereas the ILK/liver-/- mice showed a 3.7-fold increase in liver weight. The prolonged proliferative response in the ILK/liver-/- mice seems to be due to sustained induction of CAR leading to sustained induction of c-Myc, which is known to be a key mediator of TCPOPOP-CAR induced direct liver hyperplasia. CONCLUSION: The data indicate that ECM-mediated signaling by way of ILK is essential for adjustment of final liver size and proper termination of TCPOBOP-induced proliferation of hepatocytes.


Assuntos
Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatomegalia/induzido quimicamente , Hepatomegalia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/efeitos adversos , Animais , Peso Corporal/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células , Modelos Animais de Doenças , Matriz Extracelular/fisiologia , Hepatomegalia/metabolismo , Camundongos , Camundongos Knockout , Tamanho do Órgão/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA