Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 96(24): 14061-6, 1999 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-10570198

RESUMO

Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC(50) (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.


Assuntos
Quitina/metabolismo , Quitinases/genética , Precursores Enzimáticos/genética , Plasmodium falciparum/enzimologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Quitinases/antagonistas & inibidores , Quitinases/química , Quitinases/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Expressão Gênica , Genes de Protozoários , Humanos , Concentração de Íons de Hidrogênio , Malária/parasitologia , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/genética , Conformação Proteica , Proteínas de Protozoários , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trissacarídeos/farmacologia
2.
J Mol Biol ; 280(5): 913-23, 1998 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-9671559

RESUMO

Based on first principles and molecular mechanics calculations, we conclude that the mechanism of hevamine (a family 18 chitinase) involves an oxazoline ion intermediate stabilized by the neighboring C2' acetamido group. In this intermediate, the acetamido carbonyl oxygen atom forms a covalent bond to C1' of N-acetyl-glucosamine and has a transferred positive charge from the pyranose ring onto the acetamido nitrogen atom, leading to an anchimeric stabilization of 38.1 kcal/mol when docked with hevamine. This double displacement mechanism involving an oxazoline intermediate distinguishes the family 18 chitinase (which have one acidic residue near the active site) from family 19 chitinase and from hen egg-white lysozyme, which have two acidic residues near the active site. The structural and electronic properties of the oxazoline intermediate are similar to the known chitinase inhibitor allosamidin, suggesting that allosamidins act as transition state analogs of an oxazoline intermediate. Structural and electronic features of the oxazoline ion likely to be important in the design of new chitinase inhibitors are discussed.


Assuntos
Acetilglucosamina/análogos & derivados , Quitinases/química , Inibidores Enzimáticos/química , Modelos Teóricos , Trissacarídeos/química , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sítios de Ligação , Quitinases/metabolismo , Inibidores Enzimáticos/metabolismo , Hidrólise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Trissacarídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 95(8): 4276-81, 1998 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-9539727

RESUMO

By using molecular dynamics simulations, we have examined the binding of a hexaNAG substrate and two potential hydrolysis intermediates (an oxazoline ion and an oxocarbenium ion) to a family 19 barley chitinase. We find the hexaNAG substrate binds with all sugars in a chair conformation, unlike the family 18 chitinase which causes substrate distortion. Glu 67 is in a position to protonate the anomeric oxygen linking sugar residues D and E whereas Asn 199 serves to hydrogen bond with the C2' N-acetyl group of sugar D, thus preventing the formation of an oxazoline ion intermediate. In addition, Glu 89 is part of a flexible loop region allowing a conformational change to occur within the active site to bring the oxocarbenium ion intermediate and Glu 89 closer by 4-5 A. A hydrolysis product with inversion of the anomeric configuration occurs because of nucleophilic attack by a water molecule that is coordinated by Glu 89 and Ser 120. Issues important for the design of inhibitors specific to family 19 chitinases over family 18 chitinases also are discussed.


Assuntos
Quitina/química , Quitina/metabolismo , Quitinases/química , Quitinases/metabolismo , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Simulação por Computador , Ácido Glutâmico , Hordeum/enzimologia , Dados de Sequência Molecular , Software , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA