Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718881

RESUMO

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Assuntos
Biologia Computacional/métodos , Genoma Viral , Metagenoma , Metagenômica , Animais , Culicidae/virologia , Surtos de Doenças , Biblioteca Gênica , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Febre Lassa/virologia , Nigéria/epidemiologia , Sondas de Oligonucleotídeos , Oligonucleotídeos/genética , Análise de Sequência de DNA , Viroses
2.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332564

RESUMO

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Assuntos
Genoma Viral , Febre Lassa/virologia , Vírus Lassa/genética , RNA Viral/análise , Adolescente , Adulto , Animais , Teorema de Bayes , Reservatórios de Doenças , Feminino , Variação Genética , Humanos , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Nigéria/epidemiologia , Filogenia , Filogeografia , Roedores , Análise de Sequência de RNA , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA