Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443904

RESUMO

Vitamin B12 plays a role in the remethylation of homocysteine to Met, which then serves as a substrate for Met adenosyltransferase (MAT) to synthesize S-adenosylmethionine (SAM). We investigated effects of feeding two cobalt sources [Co-glucoheptonate (CoPro) or CoPectin, Zinpro Corp.], an experimental ruminally-available source of folic acid (FOA), and rumen-protected Met (RPM) on performance and hepatic one-carbon metabolism in peripartal Holstein cows. From -30 to 30 d around calving, 72 multiparous cows were randomly allocated to: CoPro, CoPro + FOA, CoPectin + FOA, or CoPectin + FOA + RPM. The Co treatments delivered 1 mg Co/kg of DM (CoPro or CoPectin), each FOA group received 50 mg/d FOA, and RPM was fed at 0.09% of DM intake (DMI). Milk yield and DMI were not affected. Compared with other groups, the percentage of milk protein was greater after the second week of lactation in CoPectin + FOA + RPM. Compared with CoPro or CoPro + FOA, feeding CoPectin + FOA or CoPectin + FOA + RPM led to a greater activity of MAT at 7 to 15 d postcalving. For betaine-homocysteine S-methyltransferase, CoPro together with CoPectin + FOA + RPM cows had greater activity at 7 and 15 d than CoPro + FOA. Overall, supplying FOA with CoPectin or CoPectin plus RPM may enhance S-adenosylmethionine synthesis via MAT in the liver after parturition. As such, these nutrients may impact methylation reactions and liver function.

2.
Front Cell Dev Biol ; 9: 805195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071240

RESUMO

B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.

3.
J Dairy Sci ; 102(6): 5673-5685, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30954260

RESUMO

Dairy cows with ketosis display excessive lipolysis in adipose tissue. Heat-shock protein B7 (HSPB7), a small heat-shock protein, plays important roles in mediating cytoprotective responses to oxidative stress in rodent adipose tissue. Accordingly, it is assumed that HSPB7 may also play important roles in the antioxidant response in adipose tissue of ketotic cows. Therefore, the aim of this study is to investigate (1) the redox state of adipose tissue in ketotic cows and (2) the role and mechanism of HSPB7 on the regulation of oxidative stress in adipocytes from preruminant calves. An in vivo study consisting of 15 healthy and 15 clinically ketotic cows was performed to harvest subcutaneous adipose tissue and blood samples. In addition, adipocytes isolated from calves were treated with different concentrations of H2O2 (0, 12.5, 25, 50, 100, or 200 µM) for 2 h, transfected with adenovirus-mediated overexpression of HSPB7 for 48 h, or transfected with small interfering RNA of HSPB7 for 48 h followed by exposure to H2O2 (200 µM) for 2 h. Serum concentrations of nonesterified fatty acids and ß-hydroxybutyrate were greater in cows with clinical ketosis, whereas serum concentration of glucose was lower. Compared with healthy cows, the malondialdehyde content was greater but the activity of glutathione peroxidase and superoxide dismutase was lower in adipose tissue of clinically ketotic cows. The abundance of HSPB7 and nuclear factor, erythroid 2 like 2 (NFE2L2) was greater in adipose tissue of clinically ketotic cows. In vitro, H2O2 treatment induced the overproduction of reactive oxygen species and malondialdehyde, and inhibited the activity of antioxidant enzymes glutathione peroxidase and superoxide dismutase in adipocytes from preruminant calves. The low concentration of H2O2 (12.5, 25, and 50 µM) increased the abundance of HSPB7 and NFE2L2, but high concentrations of H2O2 (100 or 200 µM) reduced the abundance of HSPB7 and NFE2L2. The overexpression of HSPB7 improved the H2O2-induced oxidative stress in adipocytes via increasing the abundance of NFE2L2 and its downstream target genes heme oxygenase-1 (HMOX1) and NADH quinone oxidoreductase 1 (NQO1). Knockdown of HSPB7 markedly inhibited the expression of NFE2L2, HMOX1, and NQO1 and further exacerbated H2O2-induced oxidative stress. Overall, these results indicate that activation of the HSPB7-NFE2L2 pathway increases cellular antioxidant capacity, thereby alleviating oxidative stress in bovine adipocytes.


Assuntos
Adipócitos/metabolismo , Doenças dos Bovinos/metabolismo , Proteínas de Choque Térmico/metabolismo , Cetose/veterinária , Estresse Oxidativo , Rúmen/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Antioxidantes/metabolismo , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Ácidos Graxos não Esterificados/sangue , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio , Cetose/sangue , Cetose/metabolismo , Cetose/fisiopatologia , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Rúmen/crescimento & desenvolvimento , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
J Dairy Sci ; 102(1): 833-845, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30415861

RESUMO

Fatty liver is a common metabolic disorder in dairy cows during the transition period. Perilipin 5 (PLIN5), a lipid droplet coat protein, plays important roles in the development of hepatic steatosis in mice and humans. Whether PLIN5 plays a role in the development of fatty liver in dairy cows is unknown. An in vivo study consisting of 10 healthy and 10 cows with fatty liver was performed to harvest liver tissue and blood samples. In addition, hepatocytes isolated from calves were infected with PLIN5 overexpression adenovirus for 48 h; treated with 0, 0.6, 1.2, or 2.4 mM nonesterified fatty acids (NEFA) for 24 h; or infected with PLIN5 silencing adenovirus for 48 h and then treated with 1.2 mM NEFA for 24 h. Serum concentrations of NEFA and ß-hydroxybutyrate were greater in cows with fatty liver. Milk production and plasma glucose concentrations were lower in cows with fatty liver. The results revealed that PLIN5 is highly expressed in steatotic liver and localized to lipid droplets. The abundance of fatty acid and triacylglycerol (TAG) synthesis-related proteins including sterol regulatory element binding protein-1c, fatty acid synthase, acetyl-coA carboxylase 1, diacylglycerol acyltransferase 1, and diacylglycerol acyltransferase 2 was greater in the liver of cows with fatty liver. In contrast, the abundance of microsomal triglyceride transfer protein (MTP), apolipoprotein B100, and apolipoprotein E was lower in the liver of cows with fatty liver. Consequently, cows with fatty liver exhibited severe hepatic TAG accumulation and lower blood concentration of very low density lipoprotein apolipoprotein B (VLDL-ApoB). Overexpression of PLIN5 and exogenous NEFA in cultured hepatocytes increased the abundance of sterol regulatory element binding protein-1, fatty acid synthase, acetyl-coA carboxylase 1, diacylglycerol acyltransferase 1, and diacylglycerol acyltransferase 2 but decreased the abundance of microsomal triglyceride transfer protein, apolipoprotein B100, and apolipoprotein E, which promoted TAG synthesis and inhibited VLDL-ApoB assembly, inducing lipid accumulation. Importantly, knockdown of PLIN5 attenuated the upregulation of TAG synthesis and downregulation of VLDL-ApoB assembly induced by NEFA. Overall, these data suggest that NEFA activate PLIN5, leading to TAG accumulation and inhibition of VLDL assembly. As such, these mechanisms explain in part the development of hepatic steatosis in dairy cows.


Assuntos
Doenças dos Bovinos/metabolismo , Fígado Gorduroso/veterinária , Lipídeos/biossíntese , Lipoproteínas VLDL/metabolismo , Perilipina-5/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Apolipoproteína B-100/metabolismo , Apolipoproteínas E/metabolismo , Proteínas de Transporte/metabolismo , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/sangue , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Camundongos , Perilipina-5/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
5.
J Dairy Sci ; 102(2): 1682-1692, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594378

RESUMO

High blood concentrations of nonesterified fatty acids (NEFA) during ketosis represent a source of fatty acids for milk fat synthesis and explain the increase in milk fat content in ketotic cows. Cell death-inducing DFFA-like effector a (CIDEA) is a lipid droplet coat protein with important roles in the regulation of milk fat synthesis and secretion in mice. Whether ketosis alters the expression of CIDEA in mammary gland tissue and the extent to which it may contribute to regulation of milk fat synthesis and secretion are unknown. Mammary gland tissue and blood samples were collected from healthy (n = 15) and clinically ketotic (n = 15) cows. Mammary epithelial cells isolated from cows were infected with CIDEA overexpression adenovirus for 48 h, treated with 0, 0.3, 0.6, or 1.2 mM NEFA for 24 h, or infected with CIDEA-silencing adenovirus for 48 h and treated with 1.2 mM NEFA for 24 h. Serum concentrations of NEFA and ß-hydroxybutyrate were greater in cows with clinical ketosis, and milk production and dry matter intake were lower in cows with clinical ketosis. However, compared with healthy cows, the content of milk fat of cows with clinical ketosis was greater. Compared with healthy cows, abundance of mRNA and protein of CIDEA, fatty acid synthase (FASN), acetyl-coA carboxylase 1 (ACACA), butyrophilin (BTN1A1), and xanthine dehydrogenase (XDH) was greater in mammary tissue of cows with clinical ketosis. Overexpression of CIDEA in cultured mammary epithelial cells increased the abundance of FASN, ACACA, XDH, and BTN1A1, and increased triacylglycerol (TAG) content in mammary epithelial cells. Exogenous NEFA increased the abundance of CIDEA, FASN, ACACA, XDH, and BTN1A1, and increased TAG content in mammary epithelial cells. Importantly, knockdown of CIDEA reversed the upregulation of FASN, ACACA, XDH, and BTN1A1 abundance and TAG content induced by NEFA treatment. Overall, these data suggest that high levels of NEFA stimulate the expression of CIDEA and enhance de novo fatty acid synthesis and milk fat secretion. As such, these mechanisms explain in part the elevation of milk fat content in dairy cows with clinical ketosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Doenças dos Bovinos/metabolismo , Cetose/veterinária , Leite/química , Ácido 3-Hidroxibutírico/sangue , Animais , Bovinos , Contagem de Células , Morte Celular , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Regulação da Expressão Gênica , Cetose/metabolismo , Lactação/fisiologia , Lipogênese , Leite/metabolismo , Triglicerídeos/metabolismo
6.
J Dairy Sci ; 101(12): 11175-11185, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316604

RESUMO

The ability of liver to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis. Autophagy encompasses mechanisms of cell survival, including capturing, degrading, and recycling of intracellular proteins and organelles in lysosomes. During negative nutrient status, autophagy provides substrates to sustain cellular metabolism and hence, tissue function. Severe negative energy balance in dairy cows is associated with fatty liver. The aim of this study was to investigate the hepatic autophagy status in dairy cows with severe fatty liver and to determine associations with biomarkers of liver function and inflammation. Liver and blood samples were collected from multiparous cows diagnosed as clinically healthy (n = 15) or with severe fatty liver (n = 15) at 3 to 9 d in milk. Liver tissue was biopsied by needle puncture, and serum samples were collected on 3 consecutive days via jugular venipuncture. Concentrations of free fatty acids and ß-hydroxybutyrate were greater in cows with severe fatty liver. Milk production, dry matter intake, and concentration of glucose were all lower in cows with severe fatty liver. Activities of serum aspartate aminotransferase, alanine aminotransferase, glutamate dehydrogenase, and γ-glutamyl transferase were all greater in cows with severe fatty liver. Serum concentrations of haptoglobin and serum amyloid A were also markedly greater in cows with severe fatty liver. The mRNA expression of autophagosome formation-related gene ULK1 was lower in the liver of dairy cows with severe fatty liver. However, the expression of other autophagosome formation-related genes, beclin 1 (BECN1), phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), autophagy-related gene (ATG) 3, ATG5, and ATG12, did not differ. More important, ubiquitinated proteins, protein expression of sequestosome-1 (SQSTM1, also called p62), and microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3)-II was greater in cows with severe fatty liver. Transmission electron microscopy revealed an increased number of autophagosomes in the liver of dairy cows with severe fatty liver. Taken together, these results indicate that excessive lipid infiltration of the liver impairs autophagic activity that may lead to cellular damage and inflammation.


Assuntos
Autofagia/genética , Metabolismo Energético , Fígado Gorduroso/veterinária , Inflamação/veterinária , Leite/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Autofagossomos , Biomarcadores/análise , Glicemia/análise , Bovinos , Ácidos Graxos não Esterificados/sangue , Fígado Gorduroso/fisiopatologia , Feminino , Inflamação/fisiopatologia , Lactação , Metabolismo dos Lipídeos , Fígado/fisiopatologia , Testes de Função Hepática/veterinária , Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA