Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Eur J Med Chem ; 278: 116796, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241483

RESUMO

To achieve malaria eradication, new preventative agents that act differently to front-line treatment drugs are needed. To identify potential chemoprevention starting points we screened a sub-set of the CSIRO Australia Compound Collection for compounds with slow-action in vitro activity against Plasmodium falciparum. This work identified N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines as a new antiplasmodial chemotype (e.g., 1 96 h IC50 550 nM; 3 96 h IC50 160 nM) with a different action to delayed-death slow-action drugs. A series of analogues were synthesized from thiotetrazoles and carbomoyl derivatives using Huisgen 1,3,4-oxadiazole synthesis followed by oxidation of the resultant thioethers to target sulfones. Structure activity relationship analysis of analogues identified compounds with potent and selective in vitro activity against drug-sensitive and multi-drug resistant Plasmodium parasites (e.g., 31 and 32 96 h IC50 <40 nM; SI > 2500). Subsequent studies in mice with compound 1, which had the best microsomal stability of the compounds assessed (T1/2 >255 min), demonstrated rapid clearance and poor oral in vivo efficacy in a P. berghei murine malaria model. These data indicate that while N,N-dialkyl-5-alkylsulfonyl-1,3,4-oxadiazol-2-amines are a novel class of slow-acting antiplasmodial agents, the further development of this chemotype for malaria chemoprophylaxis will require pharmacokinetic profile improvements.


Assuntos
Antimaláricos , Oxidiazóis , Plasmodium falciparum , Oxidiazóis/química , Oxidiazóis/farmacologia , Oxidiazóis/síntese química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Testes de Sensibilidade Parasitária , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Malária Falciparum/tratamento farmacológico
3.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979188

RESUMO

Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.

4.
J Cheminform ; 16(1): 63, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831351

RESUMO

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

5.
Eur J Med Chem ; 275: 116599, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38909569

RESUMO

The increase in research funding for the development of antimalarials since 2000 has led to a surge of new chemotypes with potent antimalarial activity. High-throughput screens have delivered several thousand new active compounds in several hundred series, including the 4,7-diphenyl-1,4,5,6,7,8-hexahydroquinolines, hereafter termed dihydropyridines (DHPs). We optimized the DHPs for antimalarial activity. Structure-activity relationship studies focusing on the 2-, 3-, 4-, 6-, and 7-positions of the DHP core led to the identification of compounds potent (EC50 < 10 nM) against all strains of P. falciparum tested, including the drug-resistant parasite strains K1, W2, and TM90-C2B. Evaluation of efficacy of several compounds in vivo identified two compounds that reduced parasitemia by >75 % in mice 6 days post-exposure following a single 50 mg/kg oral dose. Resistance acquisition experiments with a selected dihydropyridine led to the identification of a single mutation conveying resistance in the gene encoding for Plasmodium falciparum multi-drug resistance protein 1 (PfMDR1). The same dihydropyridine possessed transmission blocking activity. The DHPs have the potential for the development of novel antimalarial drug candidates.


Assuntos
Antimaláricos , Di-Hidropiridinas , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Di-Hidropiridinas/farmacologia , Di-Hidropiridinas/química , Di-Hidropiridinas/síntese química , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Animais , Camundongos , Estereoisomerismo , Testes de Sensibilidade Parasitária , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos
6.
Nat Rev Drug Discov ; 23(6): 461-479, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38750260

RESUMO

Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.


Assuntos
Resistência a Medicamentos , Infecções por HIV , Malária , Tuberculose , Animais , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Infecções por HIV/tratamento farmacológico , Malária/tratamento farmacológico , Tuberculose/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
7.
mBio ; 15(3): e0316923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38323831

RESUMO

Malaria parasites have adaptive mechanisms to modulate their intracellular redox status to tolerate the enhanced oxidizing effects created by malaria fever, hemoglobinopathies and other stress conditions, including antimalaria drugs. Emerging artemisinin (ART) resistance in Plasmodium falciparum is a complex phenotype linked to the parasite's tolerance of the activated drug's oxidative damage along with changes in vesicular transport, lipid metabolism, DNA repair, and exported proteins. In an earlier study, we discovered that many of these metabolic processes are induced in P. falciparum to respond to the oxidative damage caused by artemisinin, which exhibited a highly significant overlap with the parasite's adaptive response mechanisms to survive febrile temperatures. In addition, there was a significant overlap with the parasite's survival responses to oxidative stress. In this study, we investigated these relationships further using an in vitro model to evaluate if oxidative stress and heat-shock conditions could alter the parasite's response to artemisinin. The results revealed that compared to ideal culture conditions, the antimalarial efficacy of artemisinin was significantly reduced in parasites growing in intraerythrocytic oxidative stress but not in heat-shock condition. In contrast, heat shock significantly reduced the efficacy of lumefantrine that is an important ART combination therapy partner drug. We propose that prolonged exposure to intraerythrocytic microenvironmental oxidative stress, as would occur in endemic regions with high prevalence for sickle trait and other hemoglobinopathies, can predispose malaria parasites to develop tolerance to the oxidative damage caused by antimalarial drugs like artemisinin. IMPORTANCE: Emerging resistance to the frontline antimalarial drug artemisinin represents a significant threat to worldwide malaria control and elimination. The patterns of parasite changes associated with emerging resistance represent a complex array of metabolic processes evident in various genetic mutations and altered transcription profiles. Genetic factors identified in regulating P. falciparum sensitivity to artemisinin overlap with the parasite's responses to malarial fever, sickle trait, and other types of oxidative stresses, suggesting conserved inducible survival responses. In this study we show that intraerythrocytic stress conditions, oxidative stress and heat shock, can significantly decrease the sensitivity of the parasite to artemisinin and lumefantrine, respectively. These results indicate that an intraerythrocytic oxidative stress microenvironment and heat-shock condition can alter antimalarial drug efficacy. Evaluating efficacy of antimalarial drugs under ideal in vitro culture conditions may not accurately predict drug efficacy in all malaria patients.


Assuntos
Anemia Falciforme , Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Hemoglobinopatias , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Combinação de Medicamentos , Proteínas de Protozoários/genética , Antagonistas do Ácido Fólico/farmacologia , Estresse Oxidativo , Hemoglobinopatias/tratamento farmacológico , Anemia Falciforme/tratamento farmacológico , Resistência a Medicamentos/genética
8.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
9.
ACS Med Chem Lett ; 14(12): 1733-1741, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116432

RESUMO

Efforts to tackle malaria must continue for a disease that threatens half of the global population. Parasite resistance to current therapies requires new chemotypes that are able to demonstrate effectiveness and safety. Previously, we developed a machine-learning-based approach to predict compound antimalarial activity, which was trained on the compound collections of several organizations. The resulting prediction platform, MAIP, was made freely available to the scientific community and offers a solution to prioritize molecules of interest in virtual screening and hit-to-lead optimization. Here, we experimentally validate MAIP and demonstrate how the approach was used in combination with a robust compound selection workflow and a recently introduced innovative high-throughput screening (HTS) cascade to select and purchase compounds from a public library for subsequent experimental screening. We observed a 12-fold enrichment compared with a randomly selected set of molecules, and the eight hits we ultimately selected exhibit good potency and absorption, distribution, metabolism, and excretion (ADME) profiles.

10.
Nat Rev Drug Discov ; 22(10): 807-826, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652975

RESUMO

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.


Assuntos
Antimaláricos , Plasmodium , Animais , Feminino , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Descoberta de Drogas/métodos
11.
Res Sq ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546892

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

12.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1335-1346, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37587640

RESUMO

As part of a collaboration between Medicines for Malaria Venture (MMV), Certara UK and Monash University, physiologically-based pharmacokinetic (PBPK) models were developed for 20 antimalarials, using data obtained from standardized in vitro assays and clinical studies within the literature. The models have been applied within antimalarial drug development at MMV for more than 5 years. During this time, a strategy for their impactful use has evolved. All models are described in the supplementary material and are available to researchers. Case studies are also presented, demonstrating real-world development and clinical applications, including the assessment of the drug-drug interaction liability between combination partners or with co-administered drugs. This work emphasizes the benefit of PBPK modeling for antimalarial drug development and decision making, and presents a strategy to integrate it into the research and development process. It also provides a repository of shared information to benefit the global health research community.


Assuntos
Antimaláricos , Humanos , Desenvolvimento de Medicamentos , Projetos de Pesquisa , Universidades
13.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37009844

RESUMO

With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction.

14.
Biochem Pharmacol ; 205: 115287, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209839

RESUMO

The increased resistance of human malaria parasite Plasmodium falciparum (Pf) to currently used drugs necessities the development of novel anti-malarials. Here, we examine the potential of erythritol, a sugar substitute for therapeutic intervention. Erythritol is a permeant of Plasmodium falciparum aquaglyceroporin (PfAQP) which is a multifunctional channel responsible for maintaining hydro-homeostasis. We show that erythritol effectively inhibited growth and progression of asexual blood stage malaria parasite, and effect invasion and egress processes. It also inhibited the liver stage (sporozoites) and transmission stage parasite (gametocytes) development. Interestingly, erythritol inhibited in vivo growth of malaria parasite in mouse experimental model. It was more effective in inhibiting parasite growth both in vivo and in vitro when tested together with a known anti-malarial 'artesunate'. Additionally, erythritol showed cytokine-modulating effect which suggests its direct effect on the host immune system. Ammonia detection assay demonstrated that erythritol uptake effects the amount of ammonia release across the parasite. Our functional complementation assays suggest that PfAQP expression in yeast mutant restores its growth in hyperosmotic conditions but showed reduced growth in the presence of erythritol. Osmotic lysis assay suggests that erythritol creates osmotic stress for killing the parasite. Overall, our data bestow erythritol as a promising lead compound with an attractive antimalarial profile and could possibly be combined with known drugs without losing its efficacy. We propose the use of erythritol based sweet candies for protection against malaria specially in children living in the endemic area.


Assuntos
Antimaláricos , Aquagliceroporinas , Criança , Camundongos , Humanos , Animais , Antimaláricos/farmacologia , Plasmodium falciparum , Aquagliceroporinas/farmacologia , Eritritol/farmacologia , Edulcorantes , Amônia/farmacologia , Citocinas/farmacologia
15.
J Med Chem ; 65(20): 14121-14143, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36216349

RESUMO

Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Animais , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum/metabolismo , Ácido Aspártico Endopeptidases , Malária/tratamento farmacológico
16.
Mol Pharmacol ; 102(3): 172-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798366

RESUMO

Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Animais , Ânions/química , Ânions/metabolismo , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Humanos , Nutrientes , Plasmodium falciparum/metabolismo
17.
Viruses ; 14(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891332

RESUMO

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disabling disease that can cause long-term severe arthritis. Since the last large CHIKV outbreak in 2015, the reemergence of the virus represents a serious public health concern. The morbidity associated with viral infection emphasizes the need for the development of specific anti-CHIKV drugs. Herein, we describe the development and characterization of a CHIKV reporter replicon cell line and its use in replicon-based screenings. We tested 960 compounds from MMV/DNDi Open Box libraries and identified four candidates with interesting antiviral activities, which were confirmed in viral infection assays employing CHIKV-nanoluc and BHK-21 cells. The most noteworthy compound identified was itraconazole (ITZ), an orally available, safe, and cheap antifungal, that showed high selectivity indexes of >312 and >294 in both replicon-based and viral infection assays, respectively. The antiviral activity of this molecule has been described against positive-sense single stranded RNA viruses (+ssRNA) and was related to cholesterol metabolism that could affect the formation of the replication organelles. Although its precise mechanism of action against CHIKV still needs to be elucidated, our results demonstrate that ITZ is a potent inhibitor of the viral replication that could be repurposed as a broad-spectrum antiviral.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Humanos , Itraconazol/farmacologia , Luciferases , RNA Viral/genética , Replicação Viral , Vírus/genética
18.
Biochem Pharmacol ; 203: 115154, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798201

RESUMO

The development of resistance to current antimalarial therapies remains a significant source of concern. To address this risk,newdrugswithnoveltargetsin distinct developmental stages ofPlasmodiumparasites are required. In the current study,we have targetedP. falciparumTubulin(PfTubulin)proteins which represent some of thepotentialdrug targetsfor malaria chemotherapy. PlasmodialMicrotubules (MTs) play a crucial role during parasite proliferation, growth, and transmission, which render them highlydesirabletargets for the development ofnext-generation chemotherapeutics. Towards this,we have evaluated the antimalarial activity ofTubulintargetingcompounds received from theMedicines for Malaria Venture (MMV)"Pathogen Box"against the human malaria parasite,P. falciparumincluding 3D7 (chloroquine and artemisinin sensitive strain), RKL-9 (chloroquine-resistant strain), and R539T (artemisinin-resistant strain). At nanomolar concentrations, the filtered-out compounds exhibitedpronouncedmultistage antimalarialeffects across the parasite life cycle, including intra-erythrocytic blood stages, liver stage parasites, gametocytes, and ookinetes. Concomitantly, these compoundswere found toimpedemale gamete ex-flagellation, thus showingtheir transmission-blocking potential. Target mining of these potent compounds, by combining in silico, biochemical and biophysical assays,implicatedPfTubulinas their moleculartarget, which may possibly act bydisruptingMT assembly dynamics by binding at the interface of α-ßTubulin-dimer.Further, the promising ADME profile of the parent scaffold supported its consideration as a lead compound for further development.Thus, our work highlights the potential of targetingPfTubulin proteins in discovering and developing next-generation, multistage antimalarial agents against Multi-Drug Resistant (MDR) malaria parasites.


Assuntos
Antimaláricos , Artemisininas , Malária , Acesso à Informação , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Cloroquina/farmacologia , Humanos , Malária/tratamento farmacológico , Plasmodium falciparum/metabolismo , Tubulina (Proteína)/metabolismo
20.
PLoS Negl Trop Dis ; 16(2): e0010159, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120131

RESUMO

Eumycetoma is a chronic subcutaneous neglected tropical disease that can be caused by more than 40 different fungal causative agents. The most common causative agents produce black grains and belong to the fungal orders Sordariales and Pleosporales. The current antifungal agents used to treat eumycetoma are itraconazole or terbinafine, however, their cure rates are low. To find novel drugs for eumycetoma, we screened 400 diverse drug-like molecules from the Pandemic Response Box against common eumycetoma causative agents as part of the Open Source Mycetoma initiative (MycetOS). 26 compounds were able to inhibit the growth of Madurella mycetomatis, Madurella pseudomycetomatis and Madurella tropicana, 26 compounds inhibited Falciformispora senegalensis and seven inhibited growth of Medicopsis romeroi in vitro. Four compounds were able to inhibit the growth of all five species of fungi tested. They are the benzimidazole carbamates fenbendazole and carbendazim, the 8-aminoquinolone derivative tafenoquine and MMV1578570. Minimal inhibitory concentrations were then determined for the compounds active against M. mycetomatis. Compounds showing potent activity in vitro were further tested in vivo. Fenbendazole, MMV1782387, ravuconazole and olorofim were able to significantly prolong Galleria mellonella larvae survival and are promising candidates to explore in mycetoma treatment and to also serve as scaffolds for medicinal chemistry optimisation in the search for novel antifungals to treat eumycetoma.


Assuntos
Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Micetoma/tratamento farmacológico , Acetamidas/farmacologia , Animais , Ascomicetos/efeitos dos fármacos , Descoberta de Drogas , Fenbendazol/farmacologia , Madurella/efeitos dos fármacos , Mariposas/microbiologia , Doenças Negligenciadas , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Tiazóis/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA