Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 180: 108960, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159543

RESUMO

Mathematical models can be used to generate high-fidelity simulations of the cardiopulmonary system. Such models, when applied to real patients, can provide valuable insights into underlying physiological processes that are hard for clinicians to observe directly. In this work, we propose a novel modelling strategy capable of generating scenario-specific cardiopulmonary simulations to replicate the vital physiological signals clinicians use to determine the state of a patient. This model is composed of a tree-like pulmonary system that features a novel, non-linear alveoli opening strategy, based on the dynamics of balloon inflation, that interacts with the cardiovascular system via the thorax. A baseline simulation of the model is performed to measure the response of the system during spontaneous breathing which is subsequently compared to the same system under mechanical ventilation. To test the new lung opening mechanics and systematic recruitment of alveolar units, a positive end-expiratory pressure (PEEP) test is performed and its results are then compared to simulations of a deep spontaneous breath. The system displays a marked decrease in tidal volume as PEEP increases, replicating a sigmoidal curve relationship between volume and pressure. At high PEEP, cardiovascular function is shown to be visibly impaired, in contrast to the deep breath test where normal function is maintained.


Assuntos
Modelos Biológicos , Respiração com Pressão Positiva , Alvéolos Pulmonares , Humanos , Respiração com Pressão Positiva/métodos , Alvéolos Pulmonares/fisiologia , Simulação por Computador , Mecânica Respiratória/fisiologia , Modelos Cardiovasculares , Respiração
2.
Acta Neurochir (Wien) ; 158(2): 279-87; discussion 287, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26699376

RESUMO

BACKGROUND: This study aimed to compare four non-invasive intracranial pressure (nICP) methods in a prospective cohort of hydrocephalus patients whose cerebrospinal fluid dynamics was investigated using infusion tests involving controllable test-rise of ICP. METHOD: Cerebral blood flow velocity (FV), ICP and non-invasive arterial blood pressure (ABP) were recorded in 53 patients diagnosed for hydrocephalus. Non-invasive ICP methods were based on: (1) interaction between FV and ABP using black-box model (nICP_BB); (2) diastolic FV (nICP_FVd); (3) critical closing pressure (nICP_CrCP); (4) transcranial Doppler-derived pulsatility index (nICP_PI). Correlation between rise in ICP (∆ICP) and ∆nICP and averaged correlations for changes in time between ICP and nICP during infusion test were investigated. RESULTS: From baseline to plateau, all nICP estimators increased significantly. Correlations between ∆ICP and ∆nICP were better represented by nICP_PI and nICP_BB: 0.45 and 0.30 (p < 0.05). nICP_FVd and nICP_CrCP presented non-significant correlations: -0.17 (p = 0.21), 0.21 (p = 0.13). For changes in ICP during individual infusion test nICP_PI, nICP_BB and nICP_FVd presented similar correlations with ICP: 0.39 ± 0.40, 0.39 ± 0.43 and 0.35 ± 0.41 respectively. However, nICP_CrCP presented a weaker correlation (R = 0.29 ± 0.24). CONCLUSIONS: Out of the four methods, nICP_PI was the one with best performance for predicting changes in ∆ICP during infusion test, followed by nICP_BB. Unreliable correlations were shown by nICP_FVd and nICP_CrCP. Changes of ICP observed during the test were expressed by nICP values with only moderate correlations.


Assuntos
Hidrocefalia/diagnóstico por imagem , Pressão Intracraniana , Ultrassonografia Doppler Transcraniana , Adulto , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA