Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Scientometrics ; 128(6): 3313-3335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228832

RESUMO

In the paper, we propose two models of Artificial Intelligence (AI) patents in European Union (EU) countries addressing spatial and temporal behaviour. In particular, the models can quantitatively describe the interaction between countries or explain the rapidly growing trends in AI patents. For spatial analysis Poisson regression is used to explain collaboration between a pair of countries measured by the number of common patents. Through Bayesian inference, we estimated the strengths of interactions between countries in the EU and the rest of the world. In particular, a significant lack of cooperation has been identified for some pairs of countries. Alternatively, an inhomogeneous Poisson process combined with the logistic curve growth accurately models the temporal behaviour by an accurate trend line. Bayesian analysis in the time domain revealed an upcoming slowdown in patenting intensity.

2.
Sensors (Basel) ; 21(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919861

RESUMO

As the current standardization for the 5G networks nears completion, work towards understanding the potential technologies for the 6G wireless networks is already underway. One of these potential technologies for the 6G networks is reconfigurable intelligent surfaces. They offer unprecedented degrees of freedom towards engineering the wireless channel, i.e., the ability to modify the characteristics of the channel whenever and however required. Nevertheless, such properties demand that the response of the associated metasurface is well understood under all possible operational conditions. While an understanding of the radiation pattern characteristics can be obtained through either analytical models or full-wave simulations, they suffer from inaccuracy and extremely high computational complexity, respectively. Hence, in this paper, we propose a neural network-based approach that enables a fast and accurate characterization of the metasurface response. We analyze multiple scenarios and demonstrate the capabilities and utility of the proposed methodology. Concretely, we show that this method can learn and predict the parameters governing the reflected wave radiation pattern with an accuracy of a full-wave simulation (98.8-99.8%) and the time and computational complexity of an analytical model. The aforementioned result and methodology will be of specific importance for the design, fault tolerance, and maintenance of the thousands of reconfigurable intelligent surfaces that will be deployed in the 6G network environment.

3.
Sci Rep ; 9(1): 2868, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814570

RESUMO

Recent emergence of metasurfaces has enabled the development of ultra-thin flat optical components through different wavefront shaping techniques at various wavelengths. However, due to the non-adaptive nature of conventional metasurfaces, the focal point of the resulting optics needs to be fixed at the design stage, thus severely limiting its reconfigurability and applicability. In this paper, we aim to overcome such constraint by presenting a flat reflective component that can be reprogrammed to focus terahertz waves at a desired point in the near-field region. To this end, we first propose a graphene-based unit cell with phase reconfigurability, and then employ the coding metasurface approach to draw the phase profile required to set the focus on the target point. Our results show that the proposed component can operate close to the diffraction limit with high focusing range and low focusing error. We also demonstrate that, through appropriate automation, the reprogrammability of the metamirror could be leveraged to develop compact terahertz scanning and imaging systems, as well as novel reconfigurable components for terahertz wireless communications.

4.
Nanomaterials (Basel) ; 8(8)2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30060569

RESUMO

Graphene plasmonic antennas possess two significant features that render them appealing for short-range wireless communications, notably, inherent tunability and miniaturization due to the unique frequency dispersion of graphene and its support for surface plasmon waves in the terahertz band. In this letter, dipole-like antennas using few-layer graphene are proposed to achieve a better trade-off between miniaturization and radiation efficiency than current monolayer graphene antennas. The characteristics of few-layer graphene antennas are evaluated and then compared with those of antennas based on monolayer graphene and graphene stacks, which could also provide such improvements. To this end, first, the propagation properties of one-dimensional and two-dimensional plasmonic waveguides based on the aforementioned graphene structures are obtained by transfer matrix theory and finite-element simulation, respectively. Second, the antennas are investigated as three-dimensional structures using a full-wave solver. Results show that the highest radiation efficiency among the compared designs is achieved with the few-layer graphene, while the highest miniaturization is obtained with the even mode of the graphene stack antenna.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA