Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Q ; 44(1): 1-11, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39086189

RESUMO

Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFß-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFß-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFß-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFß-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.


Assuntos
Endométrio , Vesículas Extracelulares , Fibrose , Células-Tronco Mesenquimais , MicroRNAs , Fator de Crescimento Transformador beta1 , Animais , Cavalos , Feminino , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Endométrio/metabolismo , Endométrio/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Doenças dos Cavalos , Regulação da Expressão Gênica/efeitos dos fármacos , Endometriose/veterinária , Endometriose/metabolismo , Endometriose/genética
2.
Animals (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612280

RESUMO

Pre-implantation embryos release extracellular vesicles containing different molecules, including DNA. The presence of embryonic DNA in E-EVs released into the culture medium during in vitro embryo production could be useful for genetic diagnosis. However, the vesicles containing DNA might be derived from embryos suffering from apoptosis, i.e., embryos of bad quality. This work intended to confirm that embryos release DNA that is useful for genotyping by evaluating the effect of embryonic apoptosis on DNA content in E-EVs. Bovine embryos were produced by parthenogenesis and in vitro fertilization (IVF). On Day 5, morulae were transferred to individual cultures in an EV-depleted SOF medium. On Day 7, embryos were used to evaluate cellular apoptosis, and each culture medium was collected to evaluate E-EV concentration, characterization, and DNA quantification. While no effect of the origin of the embryo on the apoptotic rate was found, arrested morulae had a higher apoptotic rate. E-EVs containing DNA were identified in all samples, and the concentration of those vesicles was not affected by the origin or quality of the embryos. However, the concentration of DNA was higher in EVs released by the arrested parthenogenetic embryos. There was a correlation between the concentration of E-EVs, the concentration of DNA-positive E-EVs, and the concentration of DNA. There was no negative effect of apoptotic rate on DNA-positive E-EVs and DNA concentration; however, embryos of the best quality with a low apoptotic rate still released EVs containing DNA. This study confirms that the presence of DNA in E-EVs is independent of embryo quality. Therefore, E-EVs could be used in liquid biopsy for noninvasive genetic diagnosis.

3.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108601

RESUMO

The embryo-maternal interaction occurs during the early stages of embryo development and is essential for the implantation and full-term development of the embryo. In bovines, the secretion of interferon Tau (IFNT) during elongation is the main signal for pregnancy recognition, but its expression starts around the blastocyst stage. Embryos release extracellular vesicles (EVs) as an alternative mechanism of embryo-maternal communication. The aim of the study was to determine whether EVs secreted by bovine embryos during blastulation (D5-D7) could induce transcriptomic modifications, activating IFNT signaling in endometrial cells. Additionally, it aims to assess whether the EVs secreted by embryos produced in vivo (EVs-IVV) or in vitro (EVs-IVP) have different effects on the transcriptomic profiles of the endometrial cells. In vitro- and in vivo-produced bovine morulae were selected and individually cultured for 48 h to collect embryonic EVs (E-EVs) secreted during blastulation. E-EVs stained with PKH67 were added to in vitro-cultured bovine endometrial cells to assess EV internalization. The effect of EVs on the transcriptomic profile of endometrial cells was determined by RNA sequencing. EVs from both types of embryos induced several classical and non-classical IFNT-stimulated genes (ISGs) and other pathways related to endometrial function in epithelial endometrial cells. Higher numbers of differentially expressed genes (3552) were induced by EVs released by IVP embryos compared to EVs from IVV (1838). Gene ontology analysis showed that EVs-IVP/IVV induced the upregulation of the extracellular exosome pathway, the cellular response to stimulus, and the protein modification processes. This work provides evidence regarding the effect of embryo origin (in vivo or in vitro) on the early embryo-maternal interaction mediated by extracellular vesicles.


Assuntos
Embrião de Mamíferos , Vesículas Extracelulares , Animais , Bovinos , Feminino , Gravidez , Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Endométrio , Vesículas Extracelulares/metabolismo , Parto , Interferons/metabolismo
4.
Reprod Biol ; 23(1): 100725, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565511

RESUMO

Pre-implantation embryos release extracellular vesicles (EVs) to extracellular environment. In this work it is hypothesized that the EVs miRNA cargo will vary during pre-implantation development due to the constant changes in gene expression that take place through this period. The concentration, size and miRNA cargo of EVs secreted by competent bovine embryos during the period from compaction to blastulation (Day 3-7) were analyzed. For this analysis tow developmental windows were defined: W2 from 8-cells (D3) to morula (D5) and W3 from morula (D5) to blastocyst (D7). For W2, in vitro produced embryos were individually cultured in EVs-depleted medium from D3 to D5; culture media were collected and assigned to Group W2. Morulae were kept in culture up to blastocyst stage to determine the developmental competence. For W3, D5 morulae were collected and cultured individually in EVs-depleted medium up to blastocyst stage; culture media were assigned to Group W3, and blastocysts were kept in culture up to day 11 to define their competence. The mean size of EVs was similar between groups, however, EVs concentration was lower in W2. A total of 140 miRNAs were identified. From them, 79 were differentially expressed between the groups, 28 upregulated and 51 downregulated. miRNAs differentially detected between both developmental windows participate in the regulation of signaling pathways which crucial for embryonic development. It was concluded that the secretion of EVs is regulated by the developmental progress of the embryo during the pre-implantation period.


Assuntos
Vesículas Extracelulares , MicroRNAs , Gravidez , Feminino , Animais , Bovinos , MicroRNAs/metabolismo , Técnicas de Cultura Embrionária , Implantação do Embrião , Blastocisto/fisiologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Meios de Cultura
5.
Animals (Basel) ; 12(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049777

RESUMO

Over the last few years, several commercial FSH products have been developed for cattle superovulation (SOV) purposes in Multiple Ovulation and Embryo Transfer (MOET) programs. The SOV response is highly variable among individuals and remains one of the main limiting factors in obtaining a profitable number of transferable embryos. In this study, follicle stimulating hormone (FSH) from different origins was included in two SOV protocols, (a) FSH from purified pig pituitary extract (NIH-FSH-p; two doses/day, 12 h apart, four consecutive days); and (b) extra-long-acting bovine recombinant FSH (bscrFSH; a single dose/day, four consecutive days), to test the effects of bscrFSH on the ovarian response, hormone profile levels, in vivo embryo production and the pluripotency gene expression of the obtained embryos. A total of 68 healthy primiparous red Angus cows (Bos taurus) were randomly distributed into two experimental groups (n = 34 each). Blood sample collection for progesterone (P4) and cortisol (C) level determination was performed together with ultrasonographic assessment for ovarian size, follicles (FL) and corpora lutea (CL) quantification in each SOV protocol (Day 0, 4, 8, and 15). Moreover, FSH profiles were monitorised throughout both protocols (Day 0, 4, 5, 6, 7, 8, 9, 10, and 15). In vivo embryo quantity and quality (total structures, morulae, blastocysts, viable, degenerated and blocked embryos) were recorded in each SOV protocol. Finally, embryo quality in both protocols was assessed by the analysis of the expression level of crucial genes for early embryo development (OCT4, IFNt, CDX2, BCL2, and BAX). P4 and cortisol concentration peaks in both SOV protocols were obtained on Day 15 and Day 8, respectively, which were statistically different compared to the other time-points (p < 0.05). Ovarian dimensions increased from Day 0 to Day 15 irrespective of the SOV protocol considered (p < 0.05). Significant changes in CL number were observed over time till Day 15 irrespective of the SOV protocol applied (p < 0.05), being non- significantly different between SOV protocols within each time-point (p > 0.05). The number of CL was higher on Day 15 in the bscrFSH group compared to the NIH-FSH-p group (p < 0.05). The number of embryonic structures recovered was higher in the bscrFSH group (p = 0.025), probably as a result of a tendency towards a greater number of follicles developed compared to the NIH-FSH-p group. IFNt and BAX were overexpressed in embryos from the bscrFSH group (p < 0.05), with a fold change of 16 and 1.3, respectively. However, no statistical differences were detected regarding the OCT4, CDX2, BCL2, and BCL2/BAX expression ratio (p > 0.05). In conclusion, including bscrFSH in SOV protocols could be an important alternative by reducing the number of applications and offering an improved ovarian response together with better embryo quality and superior performance in embryo production compared to NIH-FSH-p SOV protocols.

6.
Anim Reprod ; 18(1): e20200028, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122648

RESUMO

Extracellular vesicles are nanoparticles secreted by cell and have been proposed as suitable markers to identify competent embryos produced in vitro. Characterizing EVs secreted by individual embryos is challenging because culture medium itself contributes to the pool of nanoparticles that are co-isolated. To avoid this, culture medium must be depleted of nanoparticles that are present in natural protein source. The aim of this study was to evaluate if the culture medium subjected to nanoparticle depletion can support the proper in vitro development of bovine embryos. Zygotes were cultured in groups on depleted or control medium for 8 days. Nanoparticles from the medium were characterized by their morphology, size and expression of EVs surface markers. Isolated nanoparticles were labelled and added to depleted medium containing embryos at different developmental stages and evaluated after 24 hours at 2, 8-16 cells, morula and blastocyst stages. There were no statistical differences on blastocyst rate at day 7 and 8, total cell count neither blastocyst diameter between groups. However, morphological quality was better in blastocysts cultured in non-depleted medium and the expression of SOX2 was significantly lower whereas NANOG expression was significantly higher. Few nanoparticles from medium had a typical morphology of EVs but were positive to specific surface markers. Punctuated green fluorescence near the nuclei of embryonic cells was observed in embryos from all developmental stages. In summary, nanoparticles from culture medium are internalized by in vitro cultured bovine embryos and their depletion affects the capacity of medium to support the proper embryo development.

7.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255183

RESUMO

During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo-maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo-maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5-5). Individual culture media from in vitro-produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8-16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.


Assuntos
Biomarcadores/metabolismo , Desenvolvimento Embrionário/genética , Vesículas Extracelulares/genética , MicroRNAs/genética , Animais , Blastocisto/metabolismo , Bovinos , Meios de Cultivo Condicionados/farmacologia , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino
8.
Cell Reprogram ; 22(6): 311-327, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991224

RESUMO

Equine endometrial and adipose mesenchymal stem cells (eMSCs and aMSCs, respectively) were isolated from the same donors of thoroughbred mares. The cells displayed characteristic features of MSCs, including trilineage mesodermal and also neurogenic differentiation. We evaluated the influence of cellular origin on their transcriptome profile. Cellular RNA was isolated and sequenced and extracellular vesicles (EVs) were obtained from conditioned medium of cells cultured in medium depleted of EVs, and their microRNA (miRNA) cargo analyzed by sequencing. Differential expression of mRNAs and EV-miRNA was analyzed, as well as pathways and processes most represented in each cell origin. mRNA reads from all expressed genes clustered according to the cellular origin. A total of 125 up- and 51 downregulated genes were identified and 31 differentially expressed miRNAs. Based on mRNA sequencing, endometrial MSCs strongly upregulated genes involved in the Hippo, transforming growth factor beta, and pluripotency signaling pathways. Alongside with this, pathways involved in extracellular matrix reorganization were the most represented in the miRNA cargo of EVs secreted by eMSCs. The niche from which MSCs originated defined the transcriptomic signature of the cells, including the secretion of lineage-specific loaded EV to ensure proper communication and homeostasis. Identification and testing their biological functions can provide new tools for the therapeutic use of horse MSC.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Endométrio/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Transcriptoma , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Endométrio/metabolismo , Vesículas Extracelulares/genética , Feminino , Cavalos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais
9.
Animals (Basel) ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967074

RESUMO

The main objective of this study was to analyze the effects of the inbreeding degree in high-producing primiparous dairy cows genotypically and phenotypically evaluated and its impacts on production and reproductive parameters. Eighty Holstein-Friesian primiparous cows (age: ~26 months; ~450 kg body weight) were previously genomically analyzed to determine the Inbreeding Index (II) and were divided into two groups: low inbreeding group (LI: <2.5; n = 40) and high inbreeding group (HI: ≥2.5 and ≤5.0; n = 40). Genomic determinations of production and reproductive parameters (14 in total), together with analyses of production (12) and reproductive (11) phenotypic parameters (23 in total) were carried out. Statistically significant differences were obtained between groups concerning the genomic parameters of Milk Production at 305 d and Protein Production at 305 d and the reproductive parameter Daughter Calving Ease, the first two being higher in cows of the HI group and the third lower in the LI group (p < 0.05). For the production phenotypic parameters, statistically significant differences were observed between both groups in the Total Fat, Total Protein, and Urea parameters, the first two being higher in the LI group (p < 0.05). Also, significant differences were observed in several reproductive phenotypic parameters, such as Number of Services per Conception, Calving to Conception Interval, Days Open Post Service, and Current Inter-Partum Period, all of which negatively influenced the HI group (p < 0.05). In addition, correlation analyses were performed between production and reproductive genomic parameters separately and in each consanguinity group. The results showed multiple positive and negative correlations between the production and reproductive parameters independently of the group analyzed, being these correlations more remarkable for the reproductive parameters in the LI group and the production parameters in the HI group (p < 0.05). In conclusion, the degree of inbreeding significantly influenced the results, affecting different genomic and phenotypic production and reproductive parameters in high-producing primiparous cows. The determination of the II in first-calf heifers is crucial to evaluate the negative effects associated with homozygosity avoiding an increase in inbreeding depression on production and reproductive traits.

10.
Theriogenology ; 155: 33-42, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622203

RESUMO

Horse mesenchymal stem cells (MSC) are potential anti-inflammatory tools for post-breeding induced endometritis (PBIE). In this research MSCs isolated from the endometrium or subcutaneous fat of the same donors were infused iu into mares with PBIE for assessment of their anti-inflammatory action and engraftment. PBIE was induced in nine gynecologically healthy mares by iu infusion of 500 million dead sperm in saline. Inflammatory markers were analyzed in uterine lavages and biopsies immediately before (phase I) and 3 h after infusion of sperm (phase II). Measurements: polymorph nuclear cells (PMN), proteins IL-6 and TNFα (ELISA in the lavages) and immunostaining in biopsies, transcripts of IL-1α, 6, 8, 10, TNFα and COX2 (qPCR of pelleted lavages). At 24 h after sperm deposition (phase III), mares were instilled iu with 20 ml of saline containing 2 × 107 adipose MSCs (n = 3, group 1) or endometrial MSCs (n = 3, group 2). Cells were labeled previously with carboxyfluorescein diacetate succinimidyl ester (CFDA SE). A third group (n = 3) received 20 mL of sterile saline alone. After 48 h another biopsy/lavage were done and the same parameters analyzed. For engraftment, additional biopsies were taken at days 10 and 30 of sperm infusion and analyzed by confocal microscopy. Dead sperm in saline markedly increased PMNs counts, IL-6 and TNFα expression in the ELISA (p < 0.05) and immunostaining. In phase III a significant reduction (p < 0.0001) of PMN was found in all samples, including control mares. A decrease (p < 0.05) of IL-6 and TNF-α was detected by ELISA, in the groups that received MSC, but not in control group. In the aMSC-treated group, a significant decrease was found in the expression of (IL1α, p = 0.0003; IL-6 p 0.04; IL-8, p = 0.006, TNFα p = 0.004). Expression of IL-10 and COX2 remained unchanged (p = 0.08). In the mares that received eMSC, IL-6 and 8 decreased significantly (p = 0.01), IL-10 increased (p = 0.009), while TNFα, COX2 and IL1α did not significantly change their expression. In the engraftment experiment CFDA label was found sparingly in all the samples analyzed until day 30, mainly at the stromal compartment of the endometrium. No differences in the engraftment pattern was found among cell origins. We conclude that inoculation of MSCs significantly reduced inflammation independently of the origin of the cells and that cells perform limited engraftment detectable after one month of infusion. These findings can be of help for the design of new anti-inflammatory therapies of uterine diseases in mares.


Assuntos
Endometrite , Doenças dos Cavalos , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios , Endometrite/tratamento farmacológico , Endometrite/veterinária , Endométrio , Feminino , Doenças dos Cavalos/tratamento farmacológico , Cavalos
11.
Animals (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585798

RESUMO

In mesenchymal stem cells (MSCs), it has been reported that prostaglandin E2 (PGE2) stimulation of EP2 and EP4 receptors triggers processes such as migration, self-renewal, survival, and proliferation, and their activation is involved in homing. The aim of this work was to establish a genetically modified adipose (aMSC) model in which receptor genes EP2 and EP4 were edited separately using the CRISPR/Cas9 system. After edition, the genes were evaluated as to if the expression of MSC surface markers was affected, as well as the migration capacity in vitro of the generated cells. Adipose MSCs were obtained from Chilean breed horses and cultured in DMEM High Glucose with 10% fetal bovine serum (FBS). sgRNA were cloned into a linearized LentiCRISPRv2GFP vector and transfected into HEK293FT cells for producing viral particles that were used to transduce aMSCs. GFP-expressing cells were separated by sorting to obtain individual clones. Genomic DNA was amplified, and the site-directed mutation frequency was assessed by T7E1, followed by Sanger sequencing. We selected 11 clones of EP2 and 10 clones of EP4, and by Sanger sequencing we confirmed 1 clone knock-out to aMSC/EP2 and one heterozygous mutant clone of aMSC/EP4. Both edited cells had decreased expression of EP2 and EP4 receptors when compared to the wild type, and the edition of EP2 and EP4 did not affect the expression of MSC surface markers, showing the same pattern in filling the scratch. We can conclude that the edition of these receptors in aMSCs does not affect their surface marker phenotype and migration ability when compared to wild-type cells.

12.
Reproduction ; 158(6): 477-492, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600718

RESUMO

Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 µm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86-91%) and snoRNA (9-14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated. Binary logistic regression was used to construct a non-invasive novel model to select viable embryos, based on a combination of variables of blastocyst morphokinetics and EVs characteristics, the ROC-AUC was 0.853. We concluded that characteristics of EVs secreted during blastulation vary depending on embryo quality.


Assuntos
Blastocisto/citologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Vesículas Extracelulares/metabolismo , Fertilização in vitro , MicroRNAs/genética , Animais , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Técnicas de Cultura Embrionária , Transferência Embrionária , Embrião de Mamíferos/metabolismo , Vesículas Extracelulares/genética , Feminino , Gravidez , Taxa de Gravidez , Pequeno RNA não Traduzido/genética
13.
Bioengineering (Basel) ; 5(3)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231577

RESUMO

The endometrium is an accessible source of mesenchymal stem cells. Most investigations of endometrial mesenchymal stem cells (eMSCs) have been conducted in humans. In animals, particularly in livestock, eMSC research is scarce. Such cells have been described in the bovine, ovine, caprine, porcine, and equine endometrium. Here we provide the state of the art of eMSCs in farm animals with a focus on the bovine species. In bovines, eMSCs have been identified during the phases of the estrous cycle, during which their functionality and the presence of eMSC-specific markers has been shown to change. Moreover, postpartum inflammation related to endometritis affects the presence and functionality of eMSCs, and prostaglandin E2 (PGE2) may be the mediator of such changes. We demonstrated that exposure to PGE2 in vitro modifies the transcriptomic profile of eMSCs, showing its potential role in the fate of stem cell activation, migration, and homing during pathological uterine inflammation in endometritis and in healthy puerperal endometrium. Farm animal research on eMSCs can be of great value in translational research for certain uterine pathologies and for immunomodulation of local responses to pathogens, hormones, and other substances. Further research is necessary in areas such as in vivo location of the niches and their immunomodulatory and anti-infective properties.

14.
Stem Cells Int ; 2017: 4297639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213289

RESUMO

Mesenchymal stem cells (MSCs) were isolated and characterized from postpartum bovine endometrium of animals with subclinical (n = 5) and clinical endometritis (n = 3) and healthy puerperal females (n = 5). Cells isolated displayed mean morphological features of MSCs and underwent osteogenic, chondrogenic, and adipogenic differentiation after induction (healthy and subclinical). Cells from cows with clinical endometritis did not undergo adipogenic differentiation. All cells expressed mRNAs for selected MSC markers. Endometrial MSCs were challenged in vitro with PGE2 at concentrations of 0, 1, 3, and 10 µM, and their global transcriptomic profile was studied. Overall, 1127 genes were differentially expressed between unchallenged cells and cells treated with PGE2 at all concentrations (763 up- and 364 downregulated, fold change > 2, and P < 0.05). The pathways affected the most by the PGE2 challenge were immune response, angiogenesis, and cell proliferation. In conclusion, we demonstrated that healthy puerperal bovine endometrium contains MSCs and that endometritis modifies and limits some functional characteristics of these cells, such as their ability to proceed to adipogenic differentiation. Also, PGE2, an inflammatory mediator of endometritis, modifies the transcriptomic profile of endometrial MSCs. A similar situation may occur during inflammation associated with endometritis, therefore affecting the main properties of endometrial MSCs.

15.
PLoS One ; 12(5): e0178306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542562

RESUMO

Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture media. Data suggest that characteristics of the population of EVs vary depending on embryo competence.


Assuntos
Blastocisto/fisiologia , Vesículas Extracelulares/fisiologia , Animais , Bovinos , Meios de Cultura , Técnicas de Cultura Embrionária/métodos , Vesículas Extracelulares/ultraestrutura , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA