Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 120: 61-8, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27452932

RESUMO

Chinese tarantula Ornithoctonus huwena is one of the most venomous spiders distributing in the hilly areas of southern China. In this study, using whole-cell patch-clamp technique we investigated electrophysiological and pharmacological properties of ion channels from tarantula subesophageal ganglion neurons. It was found that the neurons express multiple kinds of ion channels at least including voltage-gated calcium channels, TTX-sensitive sodium channels and two types of potassium channels. They exhibit pharmacological properties similar to mammalian subtypes. Spider calcium channels were sensitive to ω-conotoxin GVIA and diltiazem, two well-known inhibitors of mammalian neuronal high-voltage-activated (HVA) subtypes. 4-Aminopyridine and tetraethylammonium could inhibit spider outward transient and delayed-rectifier potassium channels, respectively. Huwentoxin-I and huwentoxin-IV are two abundant toxic components in the venom of Ornithoctonus huwena. Interestingly, although in our previous work they inhibit HVA calcium channels and TTX-sensitive sodium channels from mammalian sensory neurons, respectively, they fail to affect the subtypes from spider neurons. Moreover, the crude venom has no effect on delayed-rectifier potassium channels and only slightly reduces transient outward potassium channels with an IC50 value of ∼51.3 mg/L. Therefore, our findings provide important evidence for ion channels from spiders having an evolution as self-defense and prey mechanism.


Assuntos
Esôfago/efeitos dos fármacos , Gânglios/efeitos dos fármacos , Canais Iônicos/fisiologia , Neurônios/efeitos dos fármacos , Venenos de Aranha/toxicidade , Aranhas/efeitos dos fármacos , Animais , Esôfago/citologia , Feminino , Gânglios/citologia , Ativação do Canal Iônico
2.
Peptides ; 68: 148-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25218973

RESUMO

Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (ß-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs.


Assuntos
Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Canais de Sódio Disparados por Voltagem/química , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Venenos de Aranha/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
3.
Sci Rep ; 4: 4569, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24691553

RESUMO

The voltage-gated sodium channel (VGSC) interacting peptide is of special interest for both basic research and pharmaceutical purposes. In this study, we established a yeast-two-hybrid based strategy to detect the interaction(s) between neurotoxic peptide and the extracellular region of VGSC. Using a previously reported neurotoxin JZTX-III as a model molecule, we demonstrated that the interactions between JZTX-III and the extracellular regions of its target hNav1.5 are detectable and the detected interactions are directly related to its activity. We further applied this strategy to the screening of VGSC interacting peptides. Using the extracellular region of hNav1.5 as the bait, we identified a novel sodium channel inhibitor SSCM-1 from a random peptide library. This peptide selectively inhibits hNav1.5 currents in the whole-cell patch clamp assays. This strategy might be used for the large scale screening for target-specific interacting peptides of VGSCs or other ion channels.


Assuntos
Moduladores de Transporte de Membrana/metabolismo , Peptídeos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Neurotoxinas/metabolismo
4.
J Biol Chem ; 288(28): 20392-403, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23703613

RESUMO

In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics. Short extreme depolarizations partially activated the toxin-bound channel, indicating voltage-dependent inhibition of HNTX-III. HNTX-III increased the deactivation of the Nav1.7 current after extreme depolarizations. The HNTX-III·Nav1.7 complex was gradually dissociated upon prolonged strong depolarizations in a voltage-dependent manner, and the unbound toxin rebound to Nav1.7 after a long repolarization. Moreover, analysis of chimeric channels showed that the DIIS3-S4 linker was critical for HNTX-III binding to Nav1.7. These data are consistent with HNTX-III interacting with Nav1.7 site 4 and trapping the domain II voltage sensor in the closed state. The solution structure of HNTX-III was determined by two-dimensional NMR and shown to possess an inhibitor cystine knot motif. Structural analysis indicated that certain basic, hydrophobic, and aromatic residues mainly localized in the C terminus may constitute an amphiphilic surface potentially involved in HNTX-III binding to Nav1.7. Taken together, our results show that HNTX-III is distinct from ß-scorpion toxins and other ß-spider toxins in its mechanism of action and binding specificity and affinity. The present findings contribute to our understanding of the mechanism of toxin-sodium channel interaction and provide a useful tool for the investigation of the structure and function of sodium channel isoforms and for the development of analgesics.


Assuntos
Venenos de Aranha/farmacologia , Aranhas/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/citologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Espectroscopia de Ressonância Magnética , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Venenos de Aranha/química , Aranhas/genética , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética
5.
PLoS One ; 6(6): e21608, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731778

RESUMO

The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Na(v1.7) at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L.


Assuntos
Escherichia coli/metabolismo , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteínas de Répteis/metabolismo , Venenos de Aranha/metabolismo , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Eletroforese em Gel de Poliacrilamida , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7 , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Neurotoxinas/toxicidade , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/toxicidade , Proteínas de Répteis/química , Proteínas de Répteis/isolamento & purificação , Proteínas de Répteis/toxicidade , Canais de Sódio/metabolismo , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/toxicidade
6.
FASEB J ; 25(9): 3177-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665957

RESUMO

With conserved structural scaffold and divergent electrophysiological functions, animal toxins are considered powerful tools for investigating the basic structure-function relationship of voltage-gated sodium channels. Jingzhaotoxin-III (ß-TRTX-Cj1α) is a unique sodium channel gating modifier from the tarantula Chilobrachys jingzhao, because the toxin can selectively inhibit the activation of cardiac sodium channel but not neuronal subtypes. However, the molecular basis of JZTX-III interaction with sodium channels remains unknown. In this study, we showed that JZTX-III was efficiently expressed by the secretory pathway in yeast. Alanine-scanning analysis indicated that 2 acidic residues (Asp1, Glu3) and an exposed hydrophobic patch, formed by 4 Trp residues (residues 8, 9, 28 and 30), play important roles in the binding of JZTX-III to Nav1.5. JZTX-III docked to the Nav1.5 DIIS3-S4 linker. Mutations S799A, R800A, and L804A could additively reduce toxin sensitivity of Nav1.5. We also demonstrated that the unique Arg800, not emerging in other sodium channel subtypes, is responsible for JZTX-III selectively interacting with Nav1.5. The reverse mutation D816R in Nav1.7 greatly increased the sensitivity of the neuronal subtype to JZTX-III. Conversely, the mutation R800D in Nav1.5 decreased JZTX-III's IC50 by 72-fold. Therefore, our results indicated that JZTX-III is a site 4 toxin, but does not possess the same critical residues on sodium channels as other site 4 toxins. Our data also revealed the underlying mechanism for JZTX-III to be highly specific for the cardiac sodium channel.


Assuntos
Peptídeos/toxicidade , Canais de Sódio/metabolismo , Venenos de Aranha/toxicidade , Aranhas/fisiologia , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/genética , Conformação Proteica , Canais de Sódio/genética , Venenos de Aranha/química , Venenos de Aranha/genética , Relação Estrutura-Atividade
7.
Neuropharmacology ; 57(2): 77-87, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19409400

RESUMO

Tarantula Chilobrachys jingzhao is one of the most venomous species distributed in China. In this study, we have isolated and characterized a novel neurotoxin named Jingzhaotoxin-IX (JZTX-IX) from the venom of the tarantula. JZTX-IX is a C-terminally amidated peptide composed of 35 amino acid residues. The toxin shows 74% sequence identity with CcoTx3 from southeastern Africa tarantula Ceratogyrus cornuatus. JZTX-IX was found to interact with multiple types of ion channels including voltage-gated sodium channels (both tetrodotoxin-resistant and tetrodotoxin-sensitive isoforms) and Kv2.1 channel. The toxin had no effect on delayed rectifier potassium channel Kv1.1, 1.2 and 1.3. JZTX-IX shifted the voltage dependence of channel activation to more positive voltages, but binding of toxin to ion channels was not reversible by extreme depolarization. In addition, JZTX-IX could bias the activities of ion channels towards closed state because the time constant for decay (channel deactivation) of tail currents became faster in the presence of toxin. Taken together with the finding that 10 microM JZTX-IX completely blocked ion channels at resting potential without pulsing, we propose that JZTX-IX is a gating modifier showing low selectivity for ion channel types and trapping voltage sensor at closed state.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Canais de Sódio/metabolismo , Venenos de Aranha/metabolismo , Aranhas/metabolismo , Animais , Linhagem Celular , Feminino , Gânglios Espinais/metabolismo , Humanos , Técnicas In Vitro , Cinética , Masculino , Potenciais da Membrana , Camundongos , Neurônios/metabolismo , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Neurotoxinas/toxicidade , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/toxicidade , Periplaneta , Ratos , Alinhamento de Sequência , Análise de Sequência de Proteína , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/toxicidade , Tetrodotoxina/toxicidade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA