Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(19): 22270-22277, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510890

RESUMO

Tin segregation in Ge1-xSnx alloys is one of the major problems potentially hindering the use of this material in devices. Ge1-xSnx microdisks fabricated from layers with Sn concentrations up to 16.9% underwent here annealing at temperatures as high as 400 °C for 20 min without Sn segregation, in contrast with the full segregation observed in the corresponding blanket layers annealed simultaneously. After annealing, no changes in the elemental composition of the microdisks were evidenced. An enhancement of the total integrated photoluminescence, with no modifications of the emission energy, was also observed. These findings show that microstructuring offers a completely new path in maintaining the stability of high Sn concentration Ge1-xSnx layers at temperatures much higher than those used for growth. This approach enables the use of thermal annealing processes to improve the properties of this alloy in optoelectronic devices (such as light emitting diodes, lasers, photodetectors, or modulators). It should also facilitate the integration of Ge1-xSnx into well-established technologies requiring medium temperature processes. The same strategy may help to prevent Sn segregation during high temperature processes in similar metastable alloys.

2.
Light Sci Appl ; 10(1): 232, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34785641

RESUMO

GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed, Sn alloying and tensile strain can transform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations, such as poor optical confinement, lack of strain, thermal, and defects management, all of which are poorly discussed in the literature. Herein, a specific GeSn-on-insulator (GeSnOI) stack using stressor layers as dielectric optical claddings is demonstrated to be suitable for a monolithically integration of planar Group-IV semiconductor lasers on a versatile photonic platform for the near- and mid-infrared spectral range. Microdisk-shape resonators on mesa structures were fabricated from GeSnOI, after bonding a Ge0.9Sn0.1 alloy layer grown on a Ge strain-relaxed-buffer, itself on a Si(001) substrate. The GeSnOI microdisk mesas exhibited significantly improved optical gain as compared to that of conventional suspended microdisk resonators formed from the as-grown layer. We further show enhanced vertical out-coupling of the disk whispering gallery mode in-plane radiation, with up to 30% vertical out-coupling efficiency. As a result, the GeSnOI approach can be a valuable asset in the development of silicon-based mid-infrared photonics that combine integrated sources in a photonic platform with complex lightwave engineering.

3.
Opt Express ; 26(25): 32500-32508, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645416

RESUMO

We demonstrate lasing up to 230 K in a GeSn heterostructure micro-disk cavity. The GeSn 16.0% optically active layer was grown on a step-graded GeSn buffer, limiting the density of misfit dislocations. The lasing wavelengths shifted from 2720 to 2890 nm at 15 K up to 3200 nm at 230 K. Compared to results reported elsewhere, we attribute the increase in maximal lasing temperature to two factors: a stronger optical confinement by a thicker active layer and a better carrier confinement provided by a GeSn 13.8% / GeSn 16.0% / GeSn 13.8% double heterostructure.

4.
Nano Lett ; 17(12): 7299-7305, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29116815

RESUMO

Selective oxidation of the silicon element of silicon germanium (SiGe) alloys during thermal oxidation is a very important and technologically relevant mechanism used to fabricate a variety of microelectronic devices. We develop here a simple integrative approach involving vapor-liquid-solid (VLS) growth followed by selective oxidation steps to the construction of core-shell nanowires and higher-level ordered systems with scalable configurations. We examine the selective oxidation/condensation process under nonequilibrium conditions that gives rise to spontaneous formation of core-shell structures by germanium condensation. We contrast this strategy that uses reaction-diffusion-segregation mechanisms to produce coherently strained structures with highly configurable geometry and abrupt interfaces with growth-based processes which lead to low strained systems with nonuniform composition, three-dimensional morphology, and broad core-shell interface. We specially focus on SiGe core-shell nanowires and demonstrate that they can have up to 70% Ge-rich shell and 2% homogeneous strain with core diameter as small as 14 nm. Key elements of the building process associated with this approach are identified with regard to existing theoretical models. Moreover, starting from results of ab initio calculations, we discuss the electronic structure of these novel nanostructures as well as their wide potential for advanced device applications.

5.
Nano Lett ; 15(4): 2429-33, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25759950

RESUMO

Applying tensile strain in a single germanium crystal is a very promising way to tune its bandstructure and turn it into a direct band gap semiconductor. In this work, we stress vapor-liquid-solid grown germanium nanowires along their [111] axis thanks to the strain tranfer from a silicon nitride thin film by a microfabrication process. We measure the Γ-LH direct band gap transition by photocurrent spectrometry and quantify associated strain by X-ray Laue microdiffraction on beamline BM32 at the European Synchrotron Radiation Facility. Nanowires exhibit up to 1.48% strain and an absorption threshold down to 0.73 eV, which is in good agreement with theoretical computations for the Γ-LH transition, showing that the nanowire geometry is an efficient way of applying tensile uniaxial stress along the [111] axis of a germanium crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA