Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543476

RESUMO

microRNAs (miRNAs) are small non-coding RNAs (sncRNAs) that play an important role in the life cycle of human viruses. We sought to characterize human immunodeficiency virus 1 (HIV-1)-encoded miRNAs and determine their role in viral replication. Initially, a bioinformatic analysis was used to predict HIV-1-encoded miRNAs. Next, a representative number of these predicted sequences were verified using a miRNA microarray chip, reverse transcription PCR (RT-PCR), and the deep sequencing of RNA extracted from HIV-1-infected cells. Eight HIV-1-encoded sncRNA sequences conforming to the criteria that define miRNAs were identified in HIV-1-infected immortalized T cells and human primary CD4+ lymphocytes; five of the eight sequences have not been previously reported. Deep sequencing validated the presence of these virus-encoded miRNA sequences and uncovered large numbers of atypical sncRNA sequences, lacking characteristics of conventional miRNAs. We named these sequences small RNAs (smRNAs). The overexpression of four candidate HIV-1-encoded miRNAs and silencing of two smRNAs significantly increased HIV-1 viral replication. Our study uncovered novel HIV-1-encoded sncRNAs that, upon deregulated expression, alter viral titers in HIV-1-infected cells, suggesting that miRNAs and smRNAs play an important role in regulating viral replication. Future studies may reveal the function of HIV-1-encoded sncRNAs and their possible implications for diagnosis and treatment.

2.
PLoS One ; 9(12): e115327, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25514749

RESUMO

Small-interfering RNAs and microRNAs are small ∼21-22 nucleotide long RNAs capable of posttranscriptional suppression of gene expression. The synthetic siRNAs are especially designed to target pre-specified genes and are common molecular biology tools. The miRNAs are endogenous regulators of gene expression found in a wide variety of eukaryotes. miRNAs are currently utilized for diagnostics applications. Therapeutically, various miRNA-antagonizing tools are being explored and miRNAs are also utilized for cell-specific inhibition of the expression of gene therapy vectors harboring target sites for specific miRNAs. Here we show, for the first time, that siRNAs and miRNAs can be harnessed to induce gene expression. We designed special expression vectors in which target sites for artificial siRNAs or endogenous miRNAs are located between the transgene and an Upstream Inhibitory Region (UIR). We hypothesized that cleavage of the mRNA by siRNAs or miRNAs will separate the transgene from the UIR and the resulting uncapped mRNA will be capable of being translated. A UIR composed of seven open reading frames was found to be the most efficient inhibitor of the translation of the downstream transgene. We show that under such a configuration both artificial siRNAs and endogenous miRNAs were capable of inducing transgene expression. We show that using the diphtheria toxin A-chain gene, in combination with target sites for highly expressed miRNAs, specific induction of cell-death can be achieved, setting the stage for application to cancer therapy.


Assuntos
Regulação da Expressão Gênica/genética , Terapia Genética/métodos , Vetores Genéticos/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Toxina Diftérica , Perfilação da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Fases de Leitura Aberta/genética , Fragmentos de Peptídeos , RNA Interferente Pequeno/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA