Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
J Biol Chem ; : 107397, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763332

RESUMO

Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharide from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extending to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results and provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.

3.
Methods Mol Biol ; 2775: 239-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758322

RESUMO

One of the standard assays for the fungal pathogen Cryptococcus neoformans is the glucuronoxylomannan (GXM) ELISA. This assay utilizes monoclonal antibodies targeted against the critical virulence factor, the polysaccharide (PS) capsule. GXM ELISA is one of the most used assays in the field used for diagnosis of cryptococcal infection, quantification of PS content, and determination of binding specificity for antibodies. Here we present three variations of the GXM ELISA used by our group-indirect, capture, and competition ELISAs. We have also provided some history, perspective, and notes on these methods, which we hope will help the reader choose, and implement, the best assay for their research.While it has long been referred to as the GXM ELISA, we also suggest a name update to better reflect our updated understanding of the polysaccharide antigens targeted by this assay. The Cryptococcal PS ELISA is a more accurate description of this set of methodologies and the antigens they measure. Finally, we discuss the limitations of this assay and put forth future plans for expanding the antigens assayed by ELISA.


Assuntos
Criptococose , Cryptococcus neoformans , Ensaio de Imunoadsorção Enzimática , Polissacarídeos , Ensaio de Imunoadsorção Enzimática/métodos , Cryptococcus neoformans/imunologia , Criptococose/diagnóstico , Criptococose/microbiologia , Criptococose/imunologia , Polissacarídeos/análise , Polissacarídeos/imunologia , Humanos , Antígenos de Fungos/imunologia , Antígenos de Fungos/análise , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/análise , Anticorpos Monoclonais/imunologia , Anticorpos Antifúngicos/imunologia
4.
mSystems ; : e0122623, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717186

RESUMO

We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38772970

RESUMO

This volume takes a broad overview of antibody-based therapies prior to and during the COVID pandemic and examines their potential use in future pandemics. Passive antibody therapy was the first effective antimicrobial treatment and its development in the early twentieth century helped catalyze immunological and microbiological research. During the era of serum therapy (1890-1940) antibody-based therapies were developed against both viral and bacterial diseases. Effective treatment required an understanding of how to quantify antibodies, how to develop serotype-specific sera and recognition of the need to treat early in disease. Thus, although the era of serum therapy essentially ended with the development of small molecule antimicrobial therapy in the 1940s, antibody-based therapies led to important new scientific understanding, while remaining in use for some toxin and venom-caused diseases and in the prevention of outbreaks of viral hepatitis. A renewed interest in antibody-based therapies was seen in the widespread deployment of convalescent plasma and monoclonal antibodies during the COVID-19 pandemic. Convalescent plasma will likely be the first specific therapy during outbreaks with new pathogens for which there is no other therapy. For all forms of antibody-based therapies, effectiveness relies on the key principles of antibody therapy, namely, treatment early in disease with preparations containing sufficient antibody specific to the microbe in question.

7.
Rev Med Virol ; 34(3): e2533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635404

RESUMO

Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias , Imunoterapia
8.
mBio ; 15(5): e0074624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567971

RESUMO

Science currently faces major external and internal threats. External threats include persistent anti-science attacks, the post-pandemic politicization of public health, and chronic underfunding. Internal threats include a proliferation of low-quality studies, an epidemic of retractions, and questions regarding the reproducibility of important research findings. These threats occur just as humanity faces an unprecedented onslaught of existential challenges including climate change, a failing green revolution, pandemics, and severe environmental degradation of the planet, each of which will require scientific solutions. History shows that science is fragile and vulnerable to theocratic, ideological, and authoritarian forces. In this moment of crisis, it is important for all scientists to become foot soldiers in the defense of science.


Assuntos
Ciência , Humanos , Política , Saúde Pública , Mudança Climática
9.
Artigo em Inglês | MEDLINE | ID: mdl-38663655

RESUMO

BACKGROUND: Anti-spike monoclonal antibodies represent one of the most tolerable prophylaxis and therapies for COVID-19 in frail and immunocompromised patients. Unfortunately, viral evolution in Omicron has led all of them to failure. OBJECTIVES: We review here the current pipeline of anti-spike mAb's, discussing in detail the most promising candidates. SOURCES: We scanned PubMed, ClinicalTrials.gov and manufacturers' press releases for clinical studies on anti-spike monoclonal antibodies. CONTENT: We present state-of-art data clinical progress for AstraZeneca's AZD3152, Invivyd's VYD222, Regeneron's REGN-17092 and Aerium Therapeutics' AER-800. IMPLICATIONS: The anti-spike monoclonal antibody clinical pipeline is currently limited to few agents (most being single antibodies) with unknown efficacy against the dominant JN.1 sublineage. The field of antibody-based therapies requires boosting by both manufacturers and institutions.

10.
mBio ; 15(4): e0307823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511961

RESUMO

Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.


Assuntos
Síndrome da Imunodeficiência Adquirida , Criptococose , Cryptococcus neoformans , Meningite , Camundongos , Animais , Microglia , Criptococose/microbiologia , Encéfalo/microbiologia , Mamíferos
11.
mBio ; 15(5): e0064624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38551345

RESUMO

The practice of designating two or more authors as equal contributors (ECs) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on curriculum vitae (CVs) or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society for Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020. In this study, we analyze data from over 2,500 ASM publications to see how this policy affected gender bias and how research teams are making decisions on author order. Data on publications from 2018 to 2021 show that gender bias was largely nonsignificant both before and after authors were asked by ASM to provide an EC statement. The most likely reasons for EC order included alphabetical order, seniority, and chance, although there were differences for publications from different geographic regions. However, many research teams used unique methods in order selection, highlighting the importance of EC statements to provide clarity for readers, funding agencies, and tenure committees. IMPORTANCE: First-author publications are important for early career scientists to secure funding and educational opportunities. However, an analysis published in eLife in 2019 noted that female authors are more likely to be placed second even when both authors report they have contributed equally. American Society for Microbiology announced in response that they would require submissions to include a written justification of author order. In this paper, we analyze the resultant data and show that laboratories are most likely to use some combination of alphabetical order, seniority, and chance to determine author order. However, the prevalence of these methods varies based on the research team's geographic location. These findings highlight the importance of equal contributor statements to provide clarity for readers, funding agencies, and tenure committees. Furthermore, this work is critically important for understanding how these decisions are made and provides a glimpse of the sociology of science.


Assuntos
Autoria , Sexismo , Humanos , Sexismo/estatística & dados numéricos , Masculino , Feminino , Editoração/estatística & dados numéricos , Pesquisadores/estatística & dados numéricos , Microbiologia , Publicações/estatística & dados numéricos
12.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496597

RESUMO

The practice of designating two or more authors as equal contributors (EC) on a scientific publication is increasingly common as a form of sharing credit. However, EC authors are often unclearly attributed on CVs or citation engines, and it is unclear how research teams determine author order within an EC listing. In response to studies showing that male authors were more likely to be placed first in an EC listing, the American Society of Microbiology (ASM) required that authors explain the reasons for author order beginning in 2020. In this study we analyze data from over 2500 ASM publications to see how this policy affected gender bias and how research teams are making decisions on author order. Data on publications from 2018-2021 show that gender bias was largely nonsignificant both before and after authors were asked by ASM to provide an EC statement. The most likely reasons for EC order included alphabetical order, seniority, and chance, although there were differences for publications from different geographic regions. However, many research teams used unique methods in order selection, highlighting the importance of EC statements to provide clarity for readers, funding agencies, and tenure committees.

13.
Diseases ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534965

RESUMO

Plasma collected from people recovered from COVID-19 (COVID-19 convalescent plasma, CCP) was the first antibody-based therapy employed to fight the pandemic. CCP was, however, often employed in combination with other drugs, such as the antiviral remdesivir and glucocorticoids. The possible effect of such interaction has never been investigated systematically. To assess the safety and efficacy of CCP combined with other agents for treatment of patients hospitalized for COVID-19, a systematic literature search using appropriate Medical Subject Heading (MeSH) terms was performed through PubMed, EMBASE, Cochrane central, medRxiv and bioRxiv. The main outcomes considered were mortality and safety of CCP combined with other treatments versus CCP alone. This review was carried out in accordance with Cochrane methodology including risk of bias assessment and grading of the quality of evidence. Measure of treatment effect was the risk ratio (RR) together with 95% confidence intervals (CIs). A total of 11 studies (8 randomized controlled trials [RCTs] and 3 observational) were included in the systematic review, 4 studies with CCP combined with remdesivir and 6 studies with CCP combined with corticosteroids, all involving hospitalized patients. One RCT reported information on both remdesivir and steroids use with CCP. The use of CCP combined with remdesivir was associated with a significantly reduced risk of death (RR 0.74; 95% CI 0.56-0.97; p = 0.03; moderate certainty of evidence), while the use of steroids with CCP did not modify the mortality risk (RR 0.72; 95% CI 0.34-1.51; p = 0.38; very low certainty of evidence). Not enough safety data were retrieved form the systematic literature analysis. The current evidence from the literature suggests a potential beneficial effect on mortality of combined CCP plus remdesivir compared to CCP alone in hospitalized COVID-19 patients. No significant clinical interaction was found between CCP and steroids.

15.
Proc Natl Acad Sci U S A ; 121(7): e2315733121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330012

RESUMO

Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this study, NOE and J-coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac3, calculated from MD simulations. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by ß-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a ß-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Mananas , Cryptococcus neoformans/química , Polissacarídeos/química , Criptococose/microbiologia , Espectroscopia de Ressonância Magnética , Anticorpos Monoclonais , Anticorpos Antifúngicos
16.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352552

RESUMO

Cryptococcus neoformans is a fungus classified by the World Health Organization as a critically important pathogen, posing a significant threat to immunocompromised individuals. In this study, we present the chemical synthesis and evaluation of two semi-synthetic vaccine candidates targeting the capsular polysaccharide glucuronoxylomannan (GXM) of C. neoformans. These semi-synthetic glycoconjugate vaccines contain the identical synthetic decasaccharide (M2 motif) antigen. This motif is present in serotype A strains, which constitute 95% of clinical cryptococcosis cases. This synthetic oligosaccharide was conjugated to two proteins (CRM197 and Anthrax 63 kDa PA) and tested for immunogenicity in mice. The conjugates elicited a specific antibody response that bound to the M2 motif but also exhibited additional cross-reactivity towards M1 and M4 GXM motifs. Both glycoconjugates produced antibodies that bound to GXM in ELISA assays and to live fungal cells. Mice immunized with the CRM197 glycoconjugate produced opsonic antibodies and displayed trends toward increased median survival relative to mice given a mock PBS injection (18 vs 15 days, p = 0.06). While these findings indicate promise, achieving a successful vaccine demands further optimization of the glycoconjugate. It could serve as a component in a multi-valent GXM motif vaccine, enhancing both strength and breadth of immune responses.

18.
Viruses ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399991

RESUMO

Among the anti-Spike monoclonal antibodies (mAbs), the S-309 derivative sotrovimab was the most successful in having the longest temporal window of clinical use, showing a high degree of resiliency to SARS-CoV-2 evolution interrupted only by the appearance of the BA.2.86* variant of interest (VOI). This success undoubtedly reflects rational selection to target a highly conserved epitope in coronavirus Spike proteins. We review here the efficacy of sotrovimab against different SARS-CoV-2 variants in outpatients and inpatients, discussing both randomized controlled trials and real-world evidence. Although it could not be anticipated at the time of its development and introduction, sotrovimab's use in immunocompromised individuals who harbor large populations of variant viruses created the conditions for its eventual demise, as antibody selection and viral evolution led to its eventual withdrawal due to inefficacy against later variant lineages. Despite this, based on observational and real-world data, some authorities have continued to promote the use of sotrovimab, but the lack of binding to newer variants strongly argues for the futility of continued use. The story of sotrovimab highlights the power of modern biomedical science to generate novel therapeutics while also providing a cautionary tale for the need to devise strategies to minimize the emergence of resistance to antibody-based therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico
19.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...