Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396813

RESUMO

Stevia rebaudiana (Bertoni) is a highly valuable crop for the steviol glycoside content in its leaves, which are no-calorie sweeteners hundreds of times more potent than sucrose. The presence of health-promoting phenolic compounds, particularly flavonoids, in the leaf of S. rebaudiana adds further nutritional value to this crop. Although all these secondary metabolites are highly desirable in S. rebaudiana leaves, the genes regulating the biosynthesis of phenolic compounds and the shared gene network between the regulation of biosynthesis of steviol glycosides and phenolic compounds still need to be investigated in this species. To identify putative candidate genes involved in the synergistic regulation of steviol glycosides and phenolic compounds, four genotypes with different contents of these compounds were selected for a pairwise comparison RNA-seq analysis, yielding 1136 differentially expressed genes. Genes that highly correlate with both steviol glycosides and phenolic compound accumulation in the four genotypes of S. rebaudiana were identified using the weighted gene co-expression network analysis. The presence of UDP-glycosyltransferases 76G1, 76H1, 85C1, and 91A1, and several genes associated with the phenylpropanoid pathway, including peroxidase, caffeoyl-CoA O-methyltransferase, and malonyl-coenzyme A:anthocyanin 3-O-glucoside-6″-O-malonyltransferase, along with 21 transcription factors like SCL3, WRK11, and MYB111, implied an extensive and synergistic regulatory network involved in enhancing the production of such compounds in S. rebaudiana leaves. In conclusion, this work identified a variety of putative candidate genes involved in the biosynthesis and regulation of particular steviol glycosides and phenolic compounds that will be useful in gene editing strategies for increasing and steering the production of such compounds in S. rebaudiana as well as in other species.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Glicosídeos/metabolismo , Glucosídeos/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176875

RESUMO

UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes-DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network.

3.
Plants (Basel) ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987093

RESUMO

Genome divergence by repeat proliferation and/or loss is a process that plays a crucial role in species evolution. Nevertheless, knowledge of the variability related to repeat proliferation among species of the same family is still limited. Considering the importance of the Asteraceae family, here we present a first contribution towards the metarepeatome of five Asteraceae species. A comprehensive picture of the repetitive components of all genomes was obtained by genome skimming with Illumina sequence reads and by analyzing a pool of full-length long terminal repeat retrotransposons (LTR-REs). Genome skimming allowed us to estimate the abundance and variability of repetitive components. The structure of the metagenome of the selected species was composed of 67% repetitive sequences, of which LTR-REs represented the bulk of annotated clusters. The species essentially shared ribosomal DNA sequences, whereas the other classes of repetitive DNA were highly variable among species. The pool of full-length LTR-REs was retrieved from all the species and their age of insertion was established, showing several lineage-specific proliferation peaks over the last 15-million years. Overall, a large variability of repeat abundance at superfamily, lineage, and sublineage levels was observed, indicating that repeats within individual genomes followed different evolutionary and temporal dynamics, and that different events of amplification or loss of these sequences may have occurred after species differentiation.

4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834765

RESUMO

The WUSCHEL-related homeobox (WOX) is a family of specific transcription factors involved in plant development and response to stress, characterized by the presence of a homeodomain. This study represents the first comprehensive characterization of the WOX family in a member of the Asteraceae family, the sunflower (H. annuus L.). Overall, we identified 18 putative HaWOX genes divided by phylogenetic analysis in three major clades (i.e., ancient, intermediate, and WUS). These genes showed conserved structural and functional motifs. Moreover, HaWOX has homogeneously distributed on H. annuus chromosomes. In particular, 10 genes originated after whole segment duplication events, underpinning a possible evolution of this family along with the sunflower genome. In addition, gene expression analysis evidenced a specific pattern of regulation of the putative 18 HaWOX during embryo growth and in ovule and inflorescence meristem differentiation, suggesting a pivotal role for this multigenic family in sunflower development. The results obtained in this work improved the understanding of the WOX multigenic family, providing a resource for future study on functional analysis in an economically valuable species such as sunflower.


Assuntos
Helianthus , Helianthus/genética , Filogenia , Família Multigênica , Fatores de Transcrição/metabolismo , Genes Homeobox , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
6.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36331334

RESUMO

Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.


Assuntos
Rubus , Rubus/genética , Tetraploidia , Melhoramento Vegetal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Anotação de Sequência Molecular
7.
Plant J ; 113(4): 734-748, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573648

RESUMO

Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.


Assuntos
Elementos de DNA Transponíveis , Helianthus , Elementos de DNA Transponíveis/genética , Helianthus/genética , Genoma de Planta/genética , Evolução Molecular , Genômica
8.
Foods ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429202

RESUMO

Lettuce is widely used for its healthy properties, and it is of interest to increase them with minimal environmental impact. The purpose of this work was to evaluate the effect of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae in lettuce plants (Lactuca sativa L. cv. Salinas) cultivated in a soilless system with sub-optimal phosphorus (P) compared with non-inoculated controls at two different P concentrations. Results show that lettuce inoculation with the selected AMF can improve the growth and the nutritional quality of lettuce even at sub-optimal P. Leaf content of chlorophylls, carotenoids, and phenols, known as important bioactive compounds for human health, was higher in mycorrhizal lettuce plants compared with non-mycorrhizal plants. The antioxidant capacity in AMF plants showed higher values compared with control plants grown at optimal P nutrition level. Moreover, leaf gas exchanges were higher in inoculated plants than in non-inoculated ones. Nitrogen, P, and magnesium leaf content was significantly higher in mycorrhizal plants compared with non-mycorrhizal plants grown with the same P level. These findings suggest that F. mosseae can stimulate plants growth, improving the nutritional quality of lettuce leaves even when grown with sub-optimal P concentration.

9.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682899

RESUMO

Stevia rebaudiana is one of the most important crops belonging to the Asteraceae family. Stevia is cultivated all over the world as it represents a valid natural alternative to artificial sweeteners thanks to its leaves, which produce steviol glycosides that have high sweetening power and reduced caloric value. In this work, the stevia genome sequence was used to isolate and characterise full-length long-terminal repeat retrotransposons (LTR-REs), which account for more than half of the genome. The Gypsy retrotransposons were twice as abundant as the Copia ones. A disproportionate abundance of elements belonging to the Chromovirus/Tekay lineage was observed among the Gypsy elements. Only the SIRE and Angela lineages represented significant portions of the genome among the Copia elements. The dynamics with which LTR-REs colonised the stevia genome were also estimated; all isolated full-length elements turned out to be relatively young, with a proliferation peak around 1-2 million years ago. However, a different analysis conducted by comparing sequences encoding retrotranscriptase showed the occurrence of an older period in which there was a lot of LTR-RE proliferation. Finally, a group of isolated full-length elements belonging to the lineage Angela was used to analyse the genetic variability in 25 accessions of S. rebaudiana using the Inter-Retrotransposon Amplified Polymorphism (IRAP) protocol. The obtained fingerprints highlighted a high degree of genetic variability and were used to study the genomic structures of the different accessions. It was hypothesised that there are four ancestral subpopulations at the root of the analysed accessions, which all turned out to be admixed. Overall, these data may be useful for genome sequence annotations and for evaluating genetic variability in this species, which may be useful in stevia breeding.


Assuntos
Retroelementos , Stevia , Genoma de Planta , Filogenia , Melhoramento Vegetal , Retroelementos/genética , Stevia/genética , Sequências Repetidas Terminais
10.
Front Plant Sci ; 13: 869048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432417

RESUMO

The current view of plant genome evolution proposes that genome size has mainly been determined by polyploidisation and amplification/loss of transposons, with a minor role played by other repeated sequences, such as tandem repeats. In cultivated olive (Olea europaea subsp. europaea var. europaea), available data suggest a singular model of genome evolution, in which a massive expansion of tandem-repeated sequences accompanied changes in nuclear architecture. This peculiar scenario highlights the importance of focusing on Olea genus evolution, to shed light on mechanisms that led to its present genomic structure. Next-generation sequencing technologies, bioinformatics and in situ hybridisation were applied to study the genomic structure of five related Olea taxa, which originated at different times from their last common ancestor. On average, repetitive DNA in the Olea taxa ranged from ~59% to ~73% of the total genome, showing remarkable differences in terms of composition. Among repeats, we identified 11 major families of tandem repeats, with different abundances in the analysed taxa, five of which were novel discoveries. Interestingly, overall tandem repeat abundance was inversely correlated to that of retrotransposons. This trend might imply a competition in the proliferation of these repeat classes. Indeed, O. paniculata, the species closest to the Olea common ancestor, showed very few tandem-repeated sequences, while it was rich in long terminal repeat retrotransposons, suggesting that the amplification of tandem repeats occurred after its divergence from the Olea ancestor. Furthermore, some tandem repeats were physically localised in closely related O. europaea subspecies (i.e., cultivated olive and O. europaea subsp. cuspidata), which showed a significant difference in tandem repeats abundance. For 4 tandem repeats families, a similar number of hybridisation signals were observed in both subspecies, apparently indicating that, after their dissemination throughout the olive genome, these tandem repeats families differentially amplified maintaining the same positions in each genome. Overall, our research identified the temporal dynamics shaping genome structure during Olea speciation, which represented a singular model of genome evolution in higher plants.

11.
Plants (Basel) ; 11(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35270134

RESUMO

The sunflower (Helianthus annuus L.) is among the most widely cultivated crops in the world due to the oilseed production. Lipid transfer proteins (LTPs) are low molecular mass proteins encoded by a broad multigenic family in higher plants, showing a vast range of functions; these proteins have not been characterised in sunflower at the genomic level. In this work, we exploited the reliable genome sequence of sunflower to identify and characterise the LTP multigenic family in H. annuus. Overall, 101 sunflower putative LTP genes were identified using a homology search and the HMM algorithm. The selected sequences were characterised through phylogenetic analysis, exon-intron organisation, and protein structural motifs. Sunflower LTPs were subdivided into four clades, reflecting their genomic and structural organisation. This gene family was further investigated by analysing the possible duplication origin of genes, which showed the prevalence of tandem and whole genome duplication events, a result that is in line with polyploidisation events that occurred during sunflower genome evolution. Furthermore, LTP gene expression was evaluated on cDNA libraries constructed on six sunflower tissues (leaf, root, ligule, seed, stamen, and pistil) and from roots treated with stimuli mimicking biotic and abiotic stress. Genes encoding LTPs belonging to three out of four clades responded specifically to external stimuli, especially to abscisic acid, auxin, and the saline environment. Interestingly, genes encoding proteins belonging to one clade were expressed exclusively in sunflower seeds. This work is a first attempt of genome-wide identification and characterisation of the LTP multigenic family in a plant species.

12.
Rev Sci Instrum ; 92(9): 094701, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598541

RESUMO

In this paper, a pioneer partial discharge (PD) loop antenna sensor is presented and examined. It is made of a 70-turn square planar inductor with a side length of 1.8 mm, which is fabricated on top of a silicon substrate in complementary metal oxide semiconductor technology. The microsensor ability to detect corona PD is demonstrated once connected in series with a 60 dB gain amplifier. The behavior is studied at different separation distances from the line through which the PD pulses flow. At 5 cm away, a damped sinusoidal induced voltage with an amplitude of about 100 mV has been measured. The output signal spectrum is highly concentrated around a central resonance frequency of ∼5 MHz. The microsensor response is compared with those of other industrial sensors from Techimp, i.e., horn antennas and high-frequency current transformer sensors. The presented on-chip sensor can be considered a non-intrusive competing solution compared with other heavy and expensive commercial sensors due to its lightweight, compact size, and low cost. In addition, it shows an acceptable signal to noise ratio compared with other commercial electromagnetic wave-based sensors.

13.
Plants (Basel) ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579394

RESUMO

Fig trees (Ficus carica L.) are commonly grown in the Mediterranean area, where salinity is an increasing problem in coastal areas. Young, fruiting plants of cv. Dottato were subjected to moderate salt stress (100 mM NaCl added to irrigation water) for 48 days before fruit sampling. To clarify the effect of salinity stress, we investigated changes in the transcription of the main sugar metabolism-related genes involved in the synthesis, accumulation and transport of soluble carbohydrates in ripe fruits by quantitative real-time PCR as well as the content of soluble sugars by quantitative 1H nuclear magnetic resonance spectroscopy. A general increase in the transcript levels of genes involved in the transport of soluble carbohydrates was observed. Alkaline-neutral and Acid Invertases transcripts, related to the synthesis of glucose and fructose, were up-regulated in ripe fruits of NaCl-stressed plants without a change in the content of D-glucose and D-fructose. The increases in sucrose and D-sorbitol contents were likely the result of the up-regulation of the transcription of Sucrose-Synthase- and Sorbitol-Dehydrogenase-encoding genes.

14.
Animals (Basel) ; 11(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34573673

RESUMO

Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.

15.
BMC Plant Biol ; 21(1): 221, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34000996

RESUMO

BACKGROUND: Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS: In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS: The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.


Assuntos
Evolução Molecular , Ficus/genética , Genoma de Planta , Retroelementos/genética , Sequências Repetidas Terminais/genética , Filogenia , Reprodutibilidade dos Testes , Especificidade da Espécie
16.
Plants (Basel) ; 10(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673593

RESUMO

Transposable element activity can be harmful to the host's genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype.

17.
Sci Rep ; 11(1): 5292, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674668

RESUMO

We identified and characterized the pseudogene complements of five plant species: four dicots (Arabidopsis thaliana, Vitis vinifera, Populus trichocarpa and Phaseolus vulgaris) and one monocot (Oryza sativa). Retroposition was considered of modest importance for pseudogene formation in all investigated species except V. vinifera, which showed an unusually high number of retro-pseudogenes in non coding genic regions. By using a pipeline for the classification of sequence duplicates in plant genomes, we compared the relative importance of whole genome, tandem, proximal, transposed and dispersed duplication modes in the pseudo and functional gene complements. Pseudogenes showed higher tendencies than functional genes to genomic dispersion. Dispersed pseudogenes were prevalently fragmented and showed high sequence divergence at flanking regions. On the contrary, those deriving from whole genome duplication were proportionally less than expected based on observations on functional loci and showed higher levels of flanking sequence conservation than dispersed pseudogenes. Pseudogenes deriving from tandem and proximal duplications were in excess compared to functional loci, probably reflecting the high evolutionary rate associated with these duplication modes in plant genomes. These data are compatible with high rates of sequence turnover at neutral sites and double strand break repairs mediated duplication mechanisms.


Assuntos
Arabidopsis/genética , Duplicação Gênica , Genes de Plantas , Oryza/genética , Phaseolus/genética , Populus/genética , Pseudogenes , Vitis/genética , Sequência Conservada/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Família Multigênica
18.
Mycorrhiza ; 30(2-3): 373-387, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32227272

RESUMO

Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems.


Assuntos
Glomeromycota , Helianthus , Micorrizas , Ecossistema , Raízes de Plantas , RNA-Seq , Simbiose
19.
Life (Basel) ; 10(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213979

RESUMO

Seagrasses as Posidonia oceanica reproduce mostly by vegetative propagation, which can reduce genetic variability within populations. Since, in clonally propagated species, insurgence of genetic variability can be determined by the activity of transposable elements, we have estimated the activity of such repeat elements by measuring their expression level in the leaves of plants from a Mediterranean site, for which Illumina complementary DNA (cDNA) sequence reads (produced from RNAs isolated by leaves of plants from deep and shallow meadows) were publicly available. Firstly, we produced a collection of retrotransposon-related sequences and then mapped Illumina cDNA reads onto these sequences. With this approach, it was evident that Posidonia retrotransposons are, in general, barely expressed; only nine elements resulted transcribed at levels comparable with those of reference genes encoding tubulins and actins. Differences in transcript abundance were observed according to the superfamily and the lineage to which the retrotransposons belonged. Only small differences were observed between retrotransposon expression levels in leaves of shallow and deep Posidonia meadow stands, whereas one TAR/Tork element resulted differentially expressed in deep plants exposed to heat. It can be concluded that, in P. oceanica, the contribution of retrotransposon activity to genetic variability is reduced, although the nine specific active elements could actually produce new structural variations.

20.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188063

RESUMO

Much has been said about sunflower (Helianthus annuus L.) retrotransposons, representing the majority of the sunflower's repetitive component. By contrast, class II transposons remained poorly described within this species, as they present low sequence conservation and are mostly lacking coding domains, making the identification and characterization of these transposable elements difficult. The transposable element Tetu1, is a non-autonomous CACTA-like element that has been detected in the coding region of a CYCLOIDEA (CYC) gene of a sunflower mutant, tubular ray flower (turf). Based on our knowledge of Tetu1, the publicly available genome of sunflower was fully scanned. A combination of bioinformatics analyses led to the discovery of 707 putative CACTA sequences: 84 elements with complete ends and 623 truncated elements. A detailed characterization of the identified elements allowed further classification into three subgroups of 347 elements on the base of their terminal repeat sequences. Only 39 encode a protein similar to known transposases (TPase), with 10 TPase sequences showing signals of activation. Finally, an analysis of the proximity of CACTA transposons to sunflower genes showed that the majority of CACTA elements are close to the nearest gene, whereas a relevant fraction resides within gene-encoding sequences, likely interfering with sunflower genome functionality and organization.


Assuntos
Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Helianthus/genética , Proteínas de Plantas/genética , Sequência Conservada , DNA de Plantas/genética , Flores/genética , Genoma de Planta , Fenótipo , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA