Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(33): 15758-15769, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39109408

RESUMO

Over the years, numerous gold and silver artifacts have been excavated from the tombs of the Tang dynasty, which give evidence of the sophisticated metalworking techniques at that time. Few of the artifacts were thoroughly studied and their manufacturing processes were barely known. The present investigation concerns a metal headgear from a newly excavated tomb of a female in Xi'an of the Tang dynasty (618-907 A.D.), using advanced techniques in a complementary way, especially performing a detailed analysis of the corrosion products and alloying processes. The combined state-of-the-art methods and instrumentation used for the corrosion study included spectroscopy, diffraction, electron microscopy, synchrotron and their versions for specific measurements and sample preparation. The investigated headgear metal consists of a copper-based core, which is gilded by a thin gold layer, consisting of an Au-Hg alloy with a thin layer of about 400 nm. The technique used for shaping and hammered embellishments led to the creation of nanosized grains on the side that would eventually be the interior of the headgear. It was gilded using the mercury-amalgamation process, and the liquid diffusion caused the development of intermetallic compounds. This is the first recorded instance of these nano-scale and eutectic phases being observed on objects from an archaeological context. The crystallographic analysis offered valuable insights into the formation of needle-like malachite crystals growing on a layer of cuprite found on the surface of the corroded piece. The results highlight that the artisans utilized advanced methods in the creation of funerary items during the Tang dynasty.

2.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233932

RESUMO

The formation of a white etching layer (WEL), a very hard and brittle phase on the rail surface, is associated with a progressive transformation of the pearlitic grain to very fragmented grains due to the cumulative passage of trains. Its formation is associated with a complex thermomechanical coupling. To predict the exact conditions of WEL formation, a thermomechanical model previously proposed by the authors needs to be validated. In this study, monotonic and cyclic shear tests using hat-shaped specimens were conducted in the temperature range of 20 °C to 400 °C to reproduce the WEL formation. The tests showed a strong sensitivity of the material to temperature, which does not necessarily favor WEL formation. For the monotonic tests, no WELs were produced; however, a localization of the plastic deformation was observed for tests performed at 200 °C and 300 °C. In this temperature range, the material was less ductile than at room temperature, leading to failure before WEL formation. At 400 °C, the material exhibited a much more ductile behavior, and nanograins close to WEL stages were visible. For the cyclic tests, a WEL zone was successfully reproduced at room temperature only and confirmed the effect of shear in WEL formation. The same cyclic tests conducted at 200 °C and 300 °C yielded results consistent with those of the monotonic tests; the deformation was much more localized and did not lead to WEL formation.

3.
Microsc Microanal ; 22(2): 463-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26940550

RESUMO

The microstructural evolution of a 2101 lean duplex stainless steel (DSS) during isothermal aging from room temperature to 470 °C was investigated using thermoelectric power (TEP) measurements to follow the kinetics, atom probe tomography, and transmission electron microscopy. Despite the low Ni, Cr, and Mo contents, the lean DSS was sensitive to α-α' phase separation and Ni-Mn-Si-Al-Cu clustering at intermediate temperatures. The time-temperature pairs characteristic of the early stages of ferrite decomposition were determined from the TEP kinetics. Considering their composition and locations, the clusters are most likely G phase precursors.

4.
Microsc Microanal ; 18(5): 1129-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23026164

RESUMO

The microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA