Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Food Sci ; 2022: 4289059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245563

RESUMO

Deproteinized sunflower meal (DSM) was obtained as waste from ethanol-treated sunflower meal after alkaline extraction of proteins. The study aimed at biochemically and functionally characterizing the material concerning its potential practical application and valuability. The DSM consisted mainly of proteins (19.88%) and dietary fibers (61.06%) the majority of which were insoluble (53.09%). Cellulose (30.87%) and lignin (21.79%) were the most contributing compounds to the total amount of dietary fibers. The DSM contained Fe (133.29 mg/kg), Zn (201.56 mg/kg), and Cu (31.87 mg/kg). The analyses defined the DSM as a fiber concentrate with relatively high thermal stability. The distraction of the material began at 170°Ð¡ with a maximum speed at 277°Ð¡. The highest water absorption capacity (WAC) of the DSM was observed at pH 6 and 7 (approximately 8 g H2O/g sample) under all studied conditions including pH from 3 to 10 and three levels of NaCl concentrations (0.00 M, 0.03 M, and 0.25 M). At pH 7, increasing temperature from 20°C to 60°C increased the WAC of the DSM from 8.13 g H2O/g sample to 9.80 g H2O/g sample, respectively. Further increase in the temperature diminished the WAC of the DSM. At pH 6, the increase in temperature did not influence positively the WAC of the DSM. The study demonstrated the potential of the DSM, a waste obtained from the protein isolation process, as a valuable ingredient/additive in the food industry.

2.
Foods ; 11(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35206016

RESUMO

Rapeseed meal is a by-product of the oil-producing industry with a currently underestimated application. Two protein isolates, PI2.5-8.5 or PI10.5-2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequentially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5-2.5 exhibited higher water and oil absorption capacities than PI2.5-8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5-8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5-2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5-2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5-8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5-2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5-2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants.

3.
Foods ; 9(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492803

RESUMO

The solubility of plant protein isolates is a key determinant of their potential application. Two protein isolates (PI) from ethanol-treated industrial rapeseed meal, PI10.5-2.5 and PI2.5-8.5, were prepared by sequential isoelectric precipitation of alkali-extracted proteins (pH 12) starting from pH 10.5 to 2.5 or from pH 2.5 to 8.5, respectively. Biochemical analyses revealed that PI2.5-8.5 contained a higher amount of crude protein (72.84%) than PI10.5-2.5 (68.67%). In the same protein isolate, the level of total phenols (0.71%) was almost two-fold higher than that in PI10.5-2.5 (0.42%). No glucosinolates were established in both protein isolates. SDS-PAGE analysis demonstrated that PI10.5-2.5 contained 10 to 15 kDa protein fractions in a relatively higher amount, while PI2.5-8.5 was enriched in 18 to 29 kDa protein fractions. PI10.5-2.5 exhibited high solubility, varying from 41.74% at pH 4.5 to 65.13% at pH 6.5, while PI2.5-8.5 was almost two-fold less soluble under the same conditions. Up to pH 5.5, the addition of NaCl at 0.03 and 0.25 M diminished the solubility of PI2.5-8.5, while the solubility of PI10.5-2.5 was increased. The supplementation of PI10.5-2.5 with 0.25 M NaCl enhanced the protein solubility to 56.11% at pH 4.5 and 94.26% at pH 6.5. The addition of 0.03 M NaCl also increased the solubility of this protein isolate but to a lower extent. Overall, the approach for sequential precipitation of proteins influenced the biochemical characteristics, protein fractional profile and solubility of prepared protein isolates.

4.
J Food Sci Technol ; 56(6): 3090-3098, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31205363

RESUMO

A protein isolate (ERPI) was prepared from ethanol-treated rapeseed meal and used as a stabilizing agent in sunflower and rapeseed oil-in-water emulsions. The aim of the current study was to explore the influence of protein and oil concentrations on initial stability of sunflower and rapeseed oil-in-water emulsions by evaluating Gibbs free energy (ΔG) and particle size distribution. The 7-day dynamics of emulsion stability was investigated by turbidity measurement as well. A 32 factorial design was applied to assess the significance of oil (5%, 10% and 15% w/w) and ERPI protein (0.25%, 0.5% and 1.0% w/w) addition on stability of the emulsions. The results demonstrated that the increase of oil concentrations from 5 to 15% positively influenced the initial stability of sunflower and rapeseed oil-in-water emulsions. In both oil types, ERPI protein supplementation at all levels resulted in significant differences in the stability of 5% and 10% oil emulsions but did not alter the initial stability of the emulsions prepared with either 15% sunflower or rapeseed oil. With a few exceptions, there was a good agreement between Gibbs free energy data and microstructural profiles of the emulsions. Overall, emulsions with all sunflower oil concentrations and 1.0% ERPI protein exhibited better initial and a 7-day stability dynamics compared to all rapeseed oil-based emulsions. The study demonstrated the potential of ethanol-treated rapeseed meal protein isolate to serve as an emulsifying agent in sunflower and rapeseed oil containing emulsions.

5.
J Food Sci Technol ; 55(9): 3792-3798, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150839

RESUMO

The use of the rapeseed meal as a source for preparation of protein-rich ingredients for the food industry is an alternative to the current limited application as a feed additive. The aim of this study was to evaluate foaming properties of an acid-soluble protein-rich ingredient (ASP) obtained from industrial rapeseed meal as a co-product of a protein isolate. Foam capacity and stability over a period of 60 min were evaluated by using volumetric and image analyzing methods. The influence of NaCl at two boundary concentrations (0.03 and 0.25 M) was studied over a pH range from 2 to 10. The ASP exhibited high foamability (> 90%), not influenced by pH or salt addition. In contrast, foam stability, measured over a 60 min period, was pH and NaCl dependent. By the end of the observation period, the addition of 0.25 M NaCl reduced the foam volume by more than 70% at all pH values. After 30 min at pH values 4, 6 and 8, which are the most common for food products, the foams without NaCl retained 51, 38 and 41% of the initial foam volume, respectively. The results were in agreement with image analysis observations where microstructure of the foams with NaCl was more heterogeneous than that of the foams without salt addition. The high foamability and relatively high foam stability at pH from 4 to 8 without NaCl addition shows that ASP could be a potential alternative to plant proteins currently used as foaming agents in the food industry.

6.
Food Technol Biotechnol ; 55(3): 420-428, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29089856

RESUMO

The utilization of industrial sunflower meal to produce protein-rich products for the food industry is an alternative approach for better and more efficient use of this agricultural by-product. Sunflower meal proteins possess specific functional properties, which however need improvement to broaden their potential as supplements for delivering high--quality products for human nutrition. The aim of the study is to evaluate the combined influence of low-degree pepsin hydrolysis and transglutaminase (TG) modification on industrial sunflower meal protein isolate functionality at pH=2 to 10. Three TG-modified pepsin hydrolysates with the degree of hydrolysis of 0.48, 0.71 and 1.72% were produced and named TG-PH1, TG-PH2 and TG-PH3, respectively. All three TG-modified pepsin hydrolysates exhibited improved solubility at pH between 3.5 and 5.5 as the highest was observed of TG-PH3 at protein isoelectric point (pI=4.5). Sunflower meal protein isolate and TG-modified sunflower meal protein isolate had greater solubility than the three TG-modified hydrolysates at pH<3 and >7. Significant improvement of foam making capacity (p<0.05) was achieved with all three TG-modified pepsin hydrolysates in the entire pH area studied. Pepsin hydrolysis of the protein isolate with the three degrees of hydrolysis did not improve foam stability. Improved thermal stability was observed with TG-PH3 up to 80 °C compared to the protein isolate (pH=7). At 90 °C, TG modification of the protein isolate alone resulted in the highest thermal stability. Pepsin hydrolysis followed by a treatment with TG could be used to produce sunflower protein isolates with improved solubility, foam making capacity and thermal stability for use in the food industry.

7.
J Environ Sci Health B ; 51(4): 230-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26786395

RESUMO

Organic poultry is an alternative to conventional poultry which is rapidly developing as a response to customers' demand for better food and a cleaner environment. Although organic poultry manure can partially be utilized by organic horticultural producers, litter accumulation as well as excessive nitrogen still remains a challenge to maintain environment pureness, animal, and human health. Compared to conventional poultry, diet formulation without nitrogen overloading in organic poultry is even more complicated due to specific standards and regulations which limit the application of some supplements and imposes specific criteria to the ingredients in use. This is especially valid for methionine provision which supplementation as a crystalline form is only temporarily allowed. This review is focused on the utilization of various protein sources in the preparation of a diet composed of 100% organic ingredients which meet the avian physiology need for methionine, while avoiding protein overload. The potential to use unconventional protein sources such as invertebrates and microbial proteins to achieve optimal amino acid provision is also discussed.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Nitrogênio/metabolismo , Agricultura Orgânica/métodos , Aves Domésticas/fisiologia , Animais , Suplementos Nutricionais , Esterco , Metionina/farmacologia , Proteínas de Vegetais Comestíveis/administração & dosagem , Aves Domésticas/metabolismo
8.
J Environ Sci Health B ; 45(2): 162-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20390946

RESUMO

The presence of Maillard reaction products (MRP) in foods and food components is due to the non-enzymatic reaction between protein and carbohydrate residues triggered by thermal steps during food processing. The objective of this study was to assess the effect of MRPs and increasing lysine concentrations on S. Typhimurium growth and the expression of cadA which may be an indirect determinant of Salmonella virulence response. Variations in lysine concentrations (from 0 to 0.5 mM) did not exert any effect either on the final optical density after 6-hour incubation or the growth rates of S. Typhimurium in media containing MRPs. In contrast to the reduced final absorbancy of the bacterial cultures grown with histidine and arginine MRPs supplementations (0.1%), growth rates, in general, remained unaltered by all MRPs at each lysine concentration when compared to the control (M9 pH 5.8, no MRPs added). The induction levels of cadA in media containing 0.1% MRPs were close to cadA induction in the reference media (M9, pH 5.8 and no MRPs) and did not exceed the corresponding values by more than approximately 30%. Although the observed negligible induction of cadA under these conditions complies with the concept of its potential "anti-virulence" function, additional studies involving various concentrations and more refined MRPs are needed.


Assuntos
Carboxiliases/genética , Genes Bacterianos , Reação de Maillard , Salmonella typhimurium , Arginina/metabolismo , Carboxiliases/metabolismo , Manipulação de Alimentos , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
9.
J Sci Food Agric ; 90(5): 870-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20355124

RESUMO

BACKGROUND: Due to their low solubility in water, oil-based bioactive compounds require dispersion in a surface-active agent or appropriate solvents to ensure maximum contact with microorganisms. These combinations, however, may change their physical and/or chemical characteristics and consequently alter the desired functionality. The objective of this study was to determine the impact of selected dispersing agents, ethanol, dimethyl sulfoxide (DMSO), and Tween-80, on cold-pressed terpeneless (CPT) Valencia orange oil to function as a free radical scavenger and an antimicrobial food additive. RESULTS: When dissolved in ethanol or DMSO, the orange oil fraction had similar minimum inhibitory concentrations (MIC) for Listeria monocytogenes ATCC 19 115 (0.3% and 0.25% v/v respectively), which were significantly lower (P

Assuntos
Anti-Infecciosos/farmacologia , Citrus sinensis/química , Emulsificantes/química , Sequestradores de Radicais Livres/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Anti-Infecciosos/química , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Cicloexenos/análise , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Etanol/química , Aditivos Alimentares/química , Aditivos Alimentares/farmacologia , Manipulação de Alimentos , Sequestradores de Radicais Livres/química , Frutas/química , Radical Hidroxila/química , Lactobacillus plantarum/efeitos dos fármacos , Limoneno , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Picratos/química , Polissorbatos/química , Salmonella typhimurium/efeitos dos fármacos , Solubilidade , Terpenos/análise , Fatores de Tempo
10.
Sensors (Basel) ; 10(4): 3562-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22319312

RESUMO

Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Metionina/análise , Metionina/farmacocinética , Bioensaio , Metionina/biossíntese , Mutação , Organismos Geneticamente Modificados
11.
Sensors (Basel) ; 9(9): 7038-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22399985

RESUMO

In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological l-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.

12.
Int J Food Microbiol ; 129(1): 43-9, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19070381

RESUMO

Seven orange oil fractions were screened for their ability to inhibit the growth of selected Campylobacter and Arcobacter spp. using the standard agar-disk diffusion assay. Cold pressed (CP) terpeneless Valencia orange oil was found to be the most inhibitory to both Campylobacter jejuni and Campylobacter coli, exhibiting maximum zones of inhibition up to 80+/-0.0 mm. Five-fold concentrated Valencia oil and distilled d-limonene resulted in Campylobacter inhibition zones ranging from 11.0+/-1.4 to 44+/-1.4 mm against both C. jejuni and C. coli. No inhibition of Arcobacter spp. was detected by 6 out of 7 orange fractions except CP terpeneless Valencia orange oil which produced inhibition zones varying from 9.5+/-0.7 to 29+/-1.4 mm. Naturally occurring C. jejuni UAF 244 was isolated from a whole retail chicken, confirmed by hippuricase gene PCR assay, and used to determine antimicrobial capacities of the CP terpeneless Valencia orange oil and limonene when applied on chicken legs and thighs. The two types of chicken parts did not influence the antimicrobial strength of both orange fractions. While the observed reduction of C. jejuni cells attached to the skin varied approximately 1.5 to 2 logarithms compared to the control, the growth inhibition of the bacterial cells by limonene in the rinse increased by 6-fold and complete inhibition without recovery of detectable viable cells occurred when CP Valencia orange oil was applied. The study demonstrated the potential of the selected commercial orange oil fractions to serve as natural antimicrobials against C. jejuni, C. coli, and Arcobacter spp.


Assuntos
Antibacterianos/farmacologia , Arcobacter/efeitos dos fármacos , Campylobacter/efeitos dos fármacos , Galinhas/microbiologia , Cicloexenos/farmacologia , Óleos de Plantas/farmacologia , Terpenos/farmacologia , Animais , Arcobacter/crescimento & desenvolvimento , Campylobacter/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Microbiologia de Alimentos , Humanos , Limoneno , Testes de Sensibilidade Microbiana
13.
Foodborne Pathog Dis ; 5(5): 695-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18851678

RESUMO

Due to increasing concerns about the development of antimicrobial resistance amongst pathogenic bacteria, alternative strategies have been sought that do not use antibiotics to reduce pathogenic bacteria from foods and patients. A natural compound that has potent antimicrobial properties is citrus peel, which contains a variety of essential oils that inhibit the growth of or kill pathogenic bacteria. In the present study, seven citrus-based natural antimicrobials were evaluated for their ability to inhibit the growth of the pathogen Escherichia coli O157:H7. Zones of inhibition of E. coli O157:H7 by the citrus-derived fraction (10 microL/6 mm disk) were determined by a disk-diffusion assay on Sorbitol-MacConkey agar. Inhibition zones were observed after 48 h lawn growth of E. coli O157:H7 cells at 37 degrees C. Two citrus-based fractions, orange CP VAL terpeneless FAB 968611 and Limonene 1x Dist FAB 955430, inhibited E. coli O157:H7 with inhibition zones of approx. 11-24 mm dia. The remaining other five citrus-derived extracts (orange oil FL VAL 1121 ARR 974760, Orange 5x Conc VAL 4121 ARR 968374, orange terpenes ESS 1120 ARR 986259, orange terpenes CP 1100 ARR 986255, and orange terpenes OEO HP 1100 ARR 986257) were noninhibitory to E. coli O157:H7, yielding no clear inhibition zones. These studies show that citrus-derived natural compounds differ in their inhibitory activity against E. coli O157:H7 and some have potential applications as inhibitory agents against E. coli O157:H7 in various pathogen reduction strategies.


Assuntos
Antibacterianos/farmacologia , Citrus , Escherichia coli O157/efeitos dos fármacos , Microbiologia de Alimentos , Análise de Variância , Cicloexenos/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Limoneno , Óleos Voláteis/farmacologia , Terpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA