Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13668, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953509

RESUMO

Ultrafast plasma dynamics play a pivotal role in the relativistic high harmonic generation, a phenomenon that can give rise to intense light fields of attosecond duration. Controlling such plasma dynamics holds key to optimize the relevant sub-cycle processes in the high-intensity regime. Here, we demonstrate that the optimal coherent combination of two intense ultrashort pulses centered at two-colors (fundamental frequency, [Formula: see text] and second harmonic, [Formula: see text]) can lead to an optimal shape in relativistic intensity driver field that yields such an extraordinarily sensitive control. Conducting a series of two-dimensional (2D) relativistic particle-in-cell (PIC) simulations carried out for currently achievable laser parameters and realistic experimental conditions, we demonstrate that an appropriate combination of [Formula: see text] along with a precise delay control can lead to more than three times enhancement in the resulting high harmonic flux. Finally, the two-color multi-cycle field synthesized with appropriate delay and polarization can all-optically suppress several attosecond bursts while favourably allowing one burst to occur, leading to the generation of intense isolated attosecond pulses without the need of any sophisticated gating techniques.

2.
Opt Express ; 27(7): 9733-9739, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045122

RESUMO

We report the application of the time gated ion microscopy technique in accessing online the position of the source of harmonics generated in atomic gas media. This is achieved by mapping the spatial extreme-ultraviolet (XUV)-intensity distribution of the harmonic source onto a spatial ion distribution, produced in a separate focal volume of the generated XUV beam through single photon ionization of atoms. It is found that the position of the harmonic source depends on the relative position of the harmonic generation gas medium and the focus of the driving infrared (IR) beam. In particular, by translating the gas medium with respect to the IR beam focus different "virtual" source positions are obtained online. Access to such online source positioning allows better control and provides increased possibilities in experiments where selection of electron trajectory is important. The present study gives also access to quantitative information which is connected to the divergence, the coherence properties and the photon flux of the harmonics. Finally, it constitutes a precise direct method for providing complementary experimental info to different attosecond metrology techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA