Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 10(7): e0134565, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218250

RESUMO

Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism.


Assuntos
Transtorno Autístico/prevenção & controle , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Lipopolissacarídeos/efeitos adversos , Neostriado/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Zinco/administração & dosagem , Zinco/deficiência , Animais , Transtorno Autístico/etiologia , Transtorno Autístico/psicologia , Feminino , Neostriado/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ratos , Ratos Wistar
2.
Life Sci ; 120: 54-60, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25445220

RESUMO

AIMS: Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 µg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. MAIN METHODS: We prenatally exposed Wistar rats to LPS (100 µg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. KEY FINDINGS: Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. SIGNIFICANCE: Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation.


Assuntos
Lipopolissacarídeos/química , Exposição Materna , Estresse Psicológico/fisiopatologia , Zinco/uso terapêutico , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/sangue , Corpo Estriado/metabolismo , Corticosterona/sangue , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Inflamação , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Prenhez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Zinco/química
3.
PLoS One ; 8(10): e76874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116178

RESUMO

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson's Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model.


Assuntos
Gânglios da Base/metabolismo , Globo Pálido/metabolismo , Neostriado/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Substância Negra/metabolismo , Animais , Calbindinas/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 34(supl.2): s194-s205, Oct. 2012.
Artigo em Inglês | LILACS | ID: lil-662767

RESUMO

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson´s and Alzheimer´s diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.


Os transtornos neurodegenerativos são, sem dúvida, um problema crescente nas ciências da saúde, dado o aumento da expectativa de vida e de estilos de vida pouco saudáveis. Embora os mecanismos de tais doenças ainda estejam longe de ser esclarecidos, vários estudos que derivam tanto da ciência básica quanto de abordagens clínicas contribuíram nessa direção. Na presente revisão, são discutidas linhas de frente da pesquisa básica sobre as doenças de Parkinson e Alzheimer, em que grupos de pesquisas de três departamentos do Instituto de Ciências Biomédicas da Universidade de São Paulo estão envolvidos em um esforço multidisciplinar. O foco principal desta revisão envolve os modelos animais desenvolvidos para se estudar os aspectos celulares e moleculares daquelas doenças neurodegenerativas, incluindo o estresse oxidativo, a sinalização da insulina e as análises proteômicas, dentre outros. Antecipamos que esta revisão irá auxiliar o grupo a determinar as futuras direções da pesquisa conjunta nessa área e, o mais importante, estabelecer o nível de cooperação que planejamos desenvolver juntamente com colegas do Núcleo de Apoio à Pesquisa em Neurociência Aplicada que estão envolvidos com pesquisa clínica na mesma área.


Assuntos
Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/etiologia , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Exercício Físico/fisiologia , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Peptídeos/análise , Proteômica
5.
J Neurosci Res ; 90(10): 1903-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22714803

RESUMO

The aim of the present study was to evaluate the behavioral patterns associated with autism and the prevalence of these behaviors in males and females, to verify whether our model of lipopolysaccharide (LPS) administration represents an experimental model of autism. For this, we prenatally exposed Wistar rats to LPS (100 µg/kg, intraperitoneally, on gestational day 9.5), which mimics infection by gram-negative bacteria. Furthermore, because the exact mechanisms by which autism develops are still unknown, we investigated the neurological mechanisms that might underlie the behavioral alterations that were observed. Because we previously had demonstrated that prenatal LPS decreases striatal dopamine (DA) and metabolite levels, the striatal dopaminergic system (tyrosine hydroxylase [TH] and DA receptors D1a and D2) and glial cells (astrocytes and microglia) were analyzed by using immunohistochemistry, immunoblotting, and real-time PCR. Our results show that prenatal LPS exposure impaired communication (ultrasonic vocalizations) in male pups and learning and memory (T-maze spontaneous alternation) in male adults, as well as inducing repetitive/restricted behavior, but did not change social interactions in either infancy (play behavior) or adulthood in females. Moreover, although the expression of DA receptors was unchanged, the experimental animals exhibited reduced striatal TH levels, indicating that reduced DA synthesis impaired the striatal dopaminergic system. The expression of glial cell markers was not increased, which suggests that prenatal LPS did not induce permanent neuroinflammation in the striatum. Together with our previous finding of social impairments in males, the present findings demonstrate that prenatal LPS induced autism-like effects and also a hypoactivation of the dopaminergic system.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/psicologia , Comportamento Animal/efeitos dos fármacos , Dopamina/fisiologia , Lipopolissacarídeos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/psicologia , Animais , Feminino , Imuno-Histoquímica , Relações Interpessoais , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/psicologia , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Jogos e Brinquedos , Gravidez , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores Dopaminérgicos/biossíntese , Tirosina 3-Mono-Oxigenase/biossíntese , Vocalização Animal
6.
Braz J Psychiatry ; 34 Suppl 2: S194-205, 2012 Oct.
Artigo em Inglês, Português | MEDLINE | ID: mdl-23429847

RESUMO

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of São Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/etiologia , Animais , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Exercício Físico/fisiologia , Humanos , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/etiologia , Peptídeos/análise , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA