Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(11): 7937-7944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441035

RESUMO

Strongly correlated states commonly emerge in twisted bilayer graphene (TBG) with "magic-angle" (1.1°), where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45° TBG, via engineering this nonmagic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the width of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked by the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45° TBG. Our result demonstrates the feasibility of the study and application of the correlation physics in TBGs with a wider range of twist angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA