Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001151

RESUMO

Extracting the flight trajectory of the shuttlecock in a single turn in badminton games is important for automated sports analytics. This study proposes a novel method to extract shots in badminton games from a monocular camera. First, TrackNet, a deep neural network designed for tracking small objects, is used to extract the flight trajectory of the shuttlecock. Second, the YOLOv7 model is used to identify whether the player is swinging. As both TrackNet and YOLOv7 may have detection misses and false detections, this study proposes a shot refinement algorithm to obtain the correct hitting moment. By doing so, we can extract shots in rallies and classify the type of shots. Our proposed method achieves an accuracy of 89.7%, a recall rate of 91.3%, and an F1 rate of 90.5% in 69 matches, with 1582 rallies of the Badminton World Federation (BWF) match videos. This is a significant improvement compared to the use of TrackNet alone, which yields 58.8% accuracy, 93.6% recall, and 72.3% F1 score. Furthermore, the accuracy of shot type classification at three different thresholds is 72.1%, 65.4%, and 54.1%. These results are superior to those of TrackNet, demonstrating that our method effectively recognizes different shot types. The experimental results demonstrate the feasibility and validity of the proposed method.

2.
Sensors (Basel) ; 15(12): 31339-61, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26703596

RESUMO

In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.


Assuntos
Identificação Biométrica/métodos , Dermatoglifia , Mãos/anatomia & histologia , Mãos/irrigação sanguínea , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos , Máquina de Vetores de Suporte , Análise de Ondaletas
3.
IEEE Trans Image Process ; 21(4): 2152-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22020682

RESUMO

We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Veículos Automotores , Reconhecimento Automatizado de Padrão/métodos , Fotografação/métodos , Aeronaves , Teorema de Bayes , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA