Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 6(12): 2910-2918, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36561197

RESUMO

Particle chemical composition affects aerosol optical and physical properties in ways important for the fate, transport, and impact of atmospheric particulate matter. For example, hygroscopic constituents take up water to increase the physical size of a particle, which can alter the extinction properties and atmospheric lifetime. At the collocated AERosol RObotic NETwork (AERONET) and Interagency Monitoring of PROtected Visual Environments (IMPROVE) network monitoring stations in rural Bondville, Illinois, we employ a novel cloudiness determination method to compare measured aerosol physicochemical properties on predominantly cloudy and clear sky days from 2010 to 2019. On cloudy days, aerosol optical depth (AOD) is significantly higher than on clear sky days in all seasons. Measured Ångström exponents are significantly smaller on cloudy days, indicating physically larger average particle size for the sampled populations in all seasons except winter. Mass concentrations of fine particulate matter that include estimates of aerosol liquid water (ALW) are higher on cloudy days in all seasons but winter. More ALW on cloudy days is consistent with larger particle sizes inferred from Ångström exponent measurements. Aerosol chemical composition that affects hygroscopicity plays a determining impact on cloudy versus clear sky differences in AOD, Ångström exponents, and ALW. This work highlights the need for simultaneous collocated, high-time-resolution measurements of both aerosol chemical and physical properties, in particular at cloudy times when quantitative understanding of tropospheric composition is most uncertain.

2.
Acc Chem Res ; 53(9): 1715-1723, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32803954

RESUMO

Liquid water is a dominant and critical tropospheric constituent. Over polluted land masses low level cumulus clouds interact with boundary layer aerosol. The planetary boundary layer (PBL) is the lowest atmospheric layer and is directly influenced by Earth's surface. Water-aerosol interactions are critical to processes that govern the fate and transport of trace species in the Earth system and their impacts on air quality, radiative forcing, and regional hydrological cycling. In the PBL, air parcels rise adiabatically from the surface, and anthropogenically influenced hygroscopic aerosols take up water and serve as cloud condensation nuclei (CCN) to form clouds. Water-soluble gases partition to liquid water in wet aerosols and cloud droplets and undergo aqueous-phase photochemistry. Most cloud droplets evaporate, and low volatility material formed during aqueous phase chemistry remains in the condensed phase and adds to aerosol mass. The resulting cloud-processed aerosol has different physicochemical properties compared to the original CCN. Organic species that undergo multiphase chemistry in atmospheric liquid water transform gases to highly concentrated, nonideal ionic aqueous solutions and form secondary organic aerosol (SOA). In recent years, SOA formation modulated by atmospheric waters has received considerable interest.Key uncertainties are related to the chemical nature of hygroscopic aerosols that become CCN and their interaction with organic species. Gas-to-droplet or gas-to-aqueous aerosol partitioning of organic compounds is affected by the intrinsic chemical properties of the organic species in addition to the pre-existing condensed phase. Environmentally relevant conditions for atmospheric aerosol are nonideal. Salt identity and concentration, in addition to aerosol phase state, can dramatically affect organic gas miscibility for many compounds, in particular when ionic strength and salt molality are outside the bounds of limiting laws. For example, Henry's law and Debye-Hückel theory are valid only for dilute aqueous systems uncharacteristic of real atmospheric conditions. Chemical theory is incomplete, and at ambient conditions, this chemistry plays a determining role in total aerosol mass and particle size, controlling factors for air quality and climate-relevant aerosol properties.Accurate predictive skill to understand the impacts of societal choices and policies on air quality and climate requires that models contain correct chemical mechanisms and appropriate feedbacks. Globally, SOA is a dominant contributor to the atmospheric organic aerosol burden, and most mass can be traced back to precursor gas-phase volatile organic compounds (VOCs) emitted from the biosphere. However, organic aerosol concentrations in the Amazon Rainforest, the largest emitter of biogenic VOCs, are generally lower than in U.S. national parks. The Interagency Monitoring of Protected Visual Environments (IMPROVE) air quality network, with sites located predominantly in national parks, provides the longest continuous record of organic aerosol measurements in the U.S. Analysis of IMPROVE data provides a useful chemical climatology of changing air resources in response to environmental rules and shifting economic trends. IMPROVE data provides an excellent test bed for case studies to assess model skill to accurately predict changes in organic aerosol concentrations in the context of a changing climate.

3.
Environ Sci Technol ; 54(17): 10524-10532, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464056

RESUMO

Total organic carbon (TOC) mass concentrations are decreasing across the contiguous United States (CONUS). We investigate decadal trends in organic carbon (OC) thermal fractions [OC1 (volatilizes at 140 °C), OC2 (280 °C), OC3 (480 °C), OC4 (580 °C)] and pyrolyzed carbon (PC), reported at 121 locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network from 2005 to 2015 for 23 regions across the CONUS. Reductions in PC and OC2 drive decreases in TOC (TOC = OC1 + OC2 + OC3 + OC4 + PC) mass concentrations. OC2 decreases by 40% from 2005 to 2015, and PC decreases by 34%. The largest absolute mass decreases occur in the eastern United States, and relative changes normalized to local concentrations are more uniform across the CONUS. OC is converted to organic mass (OM) using region- and season-specific OM:OC ratios. Simulations with GEOS-Chem reproduce OM trends and suggest that decreases across the CONUS are due to aerosol liquid water (ALW) chemistry. Individual model species, notably aerosol derived from isoprene oxidation products and formed in ALW, correlate significantly (p < 0.05) with OM2, even in arid regions. These findings contribute to literature that suggests air quality rules aimed at SO2 and NOx emissions induce the cobenefit of reducing organic particle mass through ALW chemistry, and these benefits extend beyond the eastern United States.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Estados Unidos
4.
Environ Sci Process Impacts ; 18(10): 1305-1315, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711795

RESUMO

The photodegradation rate of the herbicide imazethapyr on epicuticular waxes of soybean and corn plants was investigated. Plant age, relative humidity, temperature, and number of light banks were varied during plant growth, analyzed statistically, and examined to determine if these factors had an effect on the photodegradation of imazethapyr. Through ultraviolet/visible (UV-Vis) and fluorescence spectroscopy, epicuticular wax characteristics of soybean and corn plants were explored, were used to confirm observations determined statistically, and explain correlations between the rate constants and the composition of the epicuticular waxes. Plant age, the interaction between plant age and light, and the quadratic dependence on temperature were all determined to have a significant impact on the photodegradation rate of imazethapyr on the epicuticular waxes of soybean plants. As for the photodegradation rate on the epicuticular waxes of corn plants, the number of light banks used during growing and temperature were significant factors.


Assuntos
Glycine max , Herbicidas/efeitos da radiação , Ácidos Nicotínicos/efeitos da radiação , Ceras , Zea mays , Luz , Fotólise , Folhas de Planta
5.
J Agric Food Chem ; 63(50): 10768-77, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26616105

RESUMO

The photodegradation of the imidazolinone herbicides imazamox, imazapic, imazaquin, and imazamethabenz-methyl has been investigated in phosphate-buffered solutions and buffered solutions containing natural organic matter (NOM). The hydrolysis of imazamethabenz-methyl, the only imidazolinone herbicide susceptible to hydrolysis, was also examined. The rate of hydrolysis of imazamethabenz-methyl increased with increasing pH, with the para isomer degrading more rapidly than the meta isomer. All photodegradation rate constants increased with pH and plateaued after pH 5.2. All imidzaolinones degraded more quickly under 253.7 nm lamps as compared to degradation under 310 nm lamps. Imazamox and imazapic degraded more rapidly than imazaquin at all pH values and had higher quantum yields. In addition, imazamox and imazapic quantum yields increased as a function of pH, whereas imazaquin quantum yields showed no trend as a function of pH. Photodegradation reaction rate constants decreased as the concentration of NOM was increased in the solutions due to the effect of light screening. Formulas for the proposed photoproducts for imazamox, imazapic, and imazaquin in pH 7 phosphate buffers were identified, and structures for the photoproducts are proposed.


Assuntos
Benzoatos/química , Herbicidas/química , Imidazóis/química , Fotólise , Quinolinas/química , Soluções , Biodegradação Ambiental , Herbicidas/efeitos da radiação , Concentração de Íons de Hidrogênio , Hidrólise , Estrutura Molecular , Ácidos Nicotínicos/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA