Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 7: 267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37065726

RESUMO

Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1 -/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1 -/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease.

2.
JIMD Rep ; 56(1): 46-57, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204596

RESUMO

Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in either NPC1 (95% of cases) or NPC2. Reduced late endosome/lysosome calcium (Ca2+) levels and the accumulation of unesterified cholesterol and sphingolipids within the late endocytic system characterize this disease. We previously reported impaired lysosome-related organelle (LRO) function in Npc1 -/- Natural Killer cells; however, the potential contribution of impaired acid compartment Ca2+ flux and LRO function in other cell types has not been determined. Here, we investigated LRO function in NPC1 disease platelets. We found elevated numbers of circulating platelets, impaired platelet aggregation and prolonged bleeding times in a murine model of NPC1 disease. Electron microscopy revealed abnormal ultrastructure in murine platelets, consistent with that seen in a U18666A (pharmacological inhibitor of NPC1) treated megakaryocyte cell line (MEG-01) exhibiting lipid storage and acidic compartment Ca2+ flux defects. Furthermore, platelets from NPC1 patients across different ages were found to cluster at the lower end of the normal range when platelet numbers were measured and had platelet volumes that were clustered at the top of the normal range. Taken together, these findings highlight the role of acid compartment Ca2+ flux in the function of platelet LROs.

3.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487688

RESUMO

Niemann-Pick disease type C (NPC) is a rare lysosomal storage disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in the NPC1 gene lead to the majority of clinical cases (95%); however, the function of NPC1 remains unknown. To gain further insights into the biology of NPC1, we took advantage of the homology between the human NPC1 protein and its yeast orthologue, Niemann-Pick C-related protein 1 (Ncr1). We recreated the NCR1 mutant in yeast and performed screens to identify compensatory or redundant pathways that may be involved in NPC pathology, as well as proteins that were mislocalized in NCR1-deficient yeast. We also identified binding partners of the yeast Ncr1 orthologue. These screens identified several processes and pathways that may contribute to NPC pathogenesis. These included alterations in mitochondrial function, cytoskeleton organization, metal ion homeostasis, lipid trafficking, calcium signalling, and nutrient sensing. The mitochondrial and cytoskeletal abnormalities were validated in patient cells carrying mutations in NPC1, confirming their dysfunction in NPC disease.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Doença de Niemann-Pick Tipo C/etiologia , Doença de Niemann-Pick Tipo C/metabolismo , Transdução de Sinais , Animais , Células CHO , Proteínas de Transporte/metabolismo , Cricetulus , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/diagnóstico , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Vacúolos/metabolismo
4.
J Inherit Metab Dis ; 43(3): 574-585, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31707734

RESUMO

Niemann-Pick disease type C (NPC) and Tangier disease are genetically and clinically distinct rare inborn errors of metabolism. NPC is caused by defects in either NPC1 or NPC2; whereas Tangier disease is caused by a defect in ABCA1. Tangier disease is currently without therapy, whereas NPC can be treated with miglustat, a small molecule inhibitor of glycosphingolipid biosynthesis that slows the neurological course of the disease. When a Tangier disease patient was misdiagnosed with NPC and treated with miglustat, her symptoms improved. This prompted us to consider whether there is mechanistic convergence between these two apparently unrelated rare inherited metabolic diseases. In this study, we found that when ABCA1 is defective (Tangier disease) there is secondary inhibition of the NPC disease pathway, linking these two diseases at the level of cellular pathophysiology. In addition, this study further supports the hypothesis that miglustat, as well as other substrate reduction therapies, may be potential therapeutic agents for treating Tangier disease as fibroblasts from multiple Tangier patients were corrected by miglustat treatment.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Transportador 1 de Cassete de Ligação de ATP/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , 1-Desoxinojirimicina/uso terapêutico , Adulto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteína C1 de Niemann-Pick , Resultado do Tratamento
5.
EMBO Rep ; 20(7): e47055, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267706

RESUMO

Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.


Assuntos
Colesterol/metabolismo , Endossomos/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Piperidinas/farmacologia , Animais , Células Cultivadas , Endossomos/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
Cell Res ; 28(10): 996-1012, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30127373

RESUMO

Dysregulated intracellular pH is emerging as a hallmark of cancer. In spite of their acidic environment and increased acid production, cancer cells maintain alkaline intracellular pH that promotes cancer progression by inhibiting apoptosis and increasing glycolysis, cell growth, migration, and invasion. Here we identify signal transducer and activator of transcription-3 (STAT3) as a key factor in the preservation of alkaline cytosol. STAT3 associates with the vacuolar H+-ATPase in a coiled-coil domain-dependent manner and increases its activity in living cells and in vitro. Accordingly, STAT3 depletion disrupts intracellular proton equilibrium by decreasing cytosolic pH and increasing lysosomal pH, respectively. This dysregulation can be reverted by reconstitution with wild-type STAT3 or STAT3 mutants unable to activate target genes (Tyr705Phe and DNA-binding mutant) or to regulate mitochondrial respiration (Ser727Ala). Upon cytosolic acidification, STAT3 is transcriptionally inactivated and further recruited to lysosomal membranes to reestablish intracellular proton equilibrium. These data reveal STAT3 as a regulator of intracellular pH and, vice versa, intracellular pH as a regulator of STAT3 localization and activity.


Assuntos
Citosol/química , Lisossomos/química , Fator de Transcrição STAT3/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Edição de Genes , Complexo de Golgi/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mutagênese , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética
7.
Hum Mol Genet ; 27(17): 3079-3098, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878115

RESUMO

Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localized to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterized mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localizes to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.


Assuntos
Adenoviridae/genética , Proteínas de Transporte/administração & dosagem , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/prevenção & controle , Terapia Genética , Longevidade/genética , Glicoproteínas de Membrana/administração & dosagem , Doença de Niemann-Pick Tipo C/prevenção & controle , Animais , Proteínas de Transporte/fisiologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia
8.
J Cell Biol ; 216(12): 3895-3898, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29138253

RESUMO

The lysosomal Ragulator complex regulates cell metabolism and growth by coordinating the activities of metabolic signaling pathways with nutrient availability. In this issue, Filipek et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201703061) and Pu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201703094) introduce a role for Ragulator in growth factor- and nutrient-regulated lysosomal trafficking.


Assuntos
Endossomos , Transdução de Sinais , Transporte Proteico
9.
FASEB J ; 31(4): 1719-1730, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082351

RESUMO

Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused by mutations in NPC1 or NPC2 with decreased functions leading to lysosomal accumulation of cholesterol and sphingolipids. FTY720/fingolimod, used for treatment of multiple sclerosis, is phosphorylated by nuclear sphingosine kinase 2, and its active phosphorylated form (FTY720-P) is an inhibitor of class I histone deacetylases. In this study, administration of clinically relevant doses of FTY720 to mice increased expression of NPC1 and -2 in brain and liver and decreased cholesterol in an SphK2-dependent manner. FTY720 greatly increased expression of NPC1 and -2 in human NPC1 mutant fibroblasts that correlated with formation of FTY720-P and significantly reduced the accumulation of cholesterol and glycosphingolipids. In agreement with this finding, FTY720 pretreatment of human NPC1 mutant fibroblasts restored transport of the cholera toxin B subunit, which binds ganglioside GM1, to the Golgi apparatus. Together, these findings suggest that FTY720 administration can ameliorate cholesterol and sphingolipid storage and trafficking defects in NPC1 mutant fibroblasts. Because neurodegeneration is the main clinical feature of NPC disease, and FTY720 accumulates in the CNS and has several advantages over available histone deacetylase inhibitors now in clinical trials, our work provides a potential opportunity for treatment of this incurable disease.-Newton, J., Hait, N. C., Maceyka, M., Colaco, A., Maczis, M., Wassif, C. A., Cougnoux, A., Porter, F. D., Milstien, S., Platt, N., Platt, F. M., Spiegel, S. FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts.


Assuntos
Colesterol/metabolismo , Cloridrato de Fingolimode/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas/metabolismo , Esfingolipídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células 3T3 , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Transporte Proteico , Proteínas/genética , Proteínas de Transporte Vesicular/genética
10.
J Lipid Res ; 57(2): 299-309, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701325

RESUMO

Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics.


Assuntos
Membrana Celular/química , Colesterol/química , Bicamadas Lipídicas/química , Lipossomas Unilamelares/química , Membrana Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Fluorescência , Corantes Fluorescentes , Humanos , Espectrometria de Fluorescência , Lipossomas Unilamelares/metabolismo
11.
J Neurochem ; 136 Suppl 1: 74-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25946402

RESUMO

Lysosomal storage diseases are inherited monogenic disorders in which lysosome function is compromised. Although individually very rare, they occur at a collective frequency of approximately one in five thousand live births and usually have catastrophic consequences for health. The lysosomal storage diseases Niemann-Pick disease type C (NPC) is caused by mutations predominantly in the lysosomal integral membrane protein NPC1 and clinically presents as a progressive neurodegenerative disorder. In this article we review data that demonstrate significant dysregulation of innate immunity in NPC, which occurs both in peripheral organs and the CNS. In particular pro-inflammatory responses promote disease progression and anti-inflammatory drugs provide benefit in animal models of the disease and are an attractive target for clinical intervention in this disorder. Niemann-Pick disease type C is a rare, devastating, inherited lysosomal storage disease with a unique cellular phenotype characterized by lysosomal accumulation of sphingosine, various glycosphingolipids and cholesterol and a reduction in lysosomal calcium. In this review we highlight the impact of the disease on innate immune activities in both the central nervous system (CNS) and peripheral tissues and discuss their contributions to pathology and the underlying mechanisms.


Assuntos
Imunidade Celular/imunologia , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/imunologia , Animais , Humanos , Células Matadoras Naturais/imunologia
12.
Exp Neurol ; 263: 102-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25284324

RESUMO

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme ß-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were largely normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated SD patients and those in future clinical trials.


Assuntos
Biomarcadores/análise , Modelos Animais de Doenças , Terapia Genética/métodos , Doença de Sandhoff/sangue , Doença de Sandhoff/líquido cefalorraquidiano , Animais , Encéfalo/patologia , Gatos , Dependovirus , Progressão da Doença , Vetores Genéticos , Leucócitos Mononucleares/patologia , Lisossomos/patologia , Imageamento por Ressonância Magnética , Doença de Sandhoff/patologia , beta-N-Acetil-Hexosaminidases/administração & dosagem , beta-N-Acetil-Hexosaminidases/genética
13.
Annu Rev Genomics Hum Genet ; 15: 173-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184529

RESUMO

Cholesterol plays a key role in many cellular processes, and is generated by cells through de novo biosynthesis or acquired from exogenous sources through the uptake of low-density lipoproteins. Cholesterol biosynthesis is a complex, multienzyme-catalyzed pathway involving a series of sequentially acting enzymes. Inherited defects in genes encoding cholesterol biosynthetic enzymes or other regulators of cholesterol homeostasis result in severe metabolic diseases, many of which are rare in the general population and currently without effective therapy. Historically, these diseases have been viewed as discrete disorders, each with its own genetic cause and distinct pathogenic cascades that lead to its specific clinical features. However, studies have recently shown that three of these diseases have an unanticipated mechanistic convergence. This surprising finding is not only shedding light on details of cellular cholesterol homeostasis but also suggesting novel approaches to therapy.


Assuntos
Colesterol/metabolismo , Homeostase , Lipoproteínas LDL/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Fenótipo de Síndrome de Antley-Bixler/genética , Fenótipo de Síndrome de Antley-Bixler/patologia , Colesterol/biossíntese , Colesterol/genética , Condrodisplasia Punctata/genética , Condrodisplasia Punctata/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Lipoproteínas LDL/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Erros Inatos do Metabolismo de Esteroides/genética , Erros Inatos do Metabolismo de Esteroides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA