Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(6): 1651-1664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36656363

RESUMO

PURPOSE: F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [18F]F13640 binds preferentially to functional 5-HT1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT1A receptors by [18F]F13640 in humans and describe a simplified model for its quantification. METHODS: PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) (n = 9) and test-retest protocol (n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). RESULTS: [18F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test-retest parameters and the prolonged binding kinetics of [18F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. CONCLUSION: The favorable brain labeling and kinetic profile of [18F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [18F]F13640's kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. TRIAL REGISTRATION: Trial Registration EudraCT 2017-002,722-21.


Assuntos
Compostos Radiofarmacêuticos , Serotonina , Animais , Humanos , Masculino , Adulto Jovem , Adulto , Compostos Radiofarmacêuticos/metabolismo , Reprodutibilidade dos Testes , Serotonina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos
2.
BMJ Open ; 12(2): e051274, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140147

RESUMO

INTRODUCTION: Prostate multiparametric MRI (mpMRI) has shown good sensitivity in detecting cancers with an International Society of Urological Pathology (ISUP) grade of ≥2. However, it lacks specificity, and its inter-reader reproducibility remains moderate. Biomarkers, such as the Prostate Health Index (PHI), may help select patients for prostate biopsy. Computer-aided diagnosis/detection (CAD) systems may also improve mpMRI interpretation. Different prototypes of CAD systems are currently developed under the Recherche Hospitalo-Universitaire en Santé / Personalized Focused Ultrasound Surgery of Localized Prostate Cancer (RHU PERFUSE) research programme, tackling challenging issues such as robustness across imaging protocols and magnetic resonance (MR) vendors, and ability to characterise cancer aggressiveness. The study primary objective is to evaluate the non-inferiority of the area under the receiver operating characteristic curve of the final CAD system as compared with the Prostate Imaging-Reporting and Data System V.2.1 (PI-RADS V.2.1) in predicting the presence of ISUP ≥2 prostate cancer in patients undergoing prostate biopsy. METHODS: This prospective, multicentre, non-inferiority trial will include 420 men with suspected prostate cancer, a prostate-specific antigen level of ≤30 ng/mL and a clinical stage ≤T2 c. Included men will undergo prostate mpMRI that will be interpreted using the PI-RADS V.2.1 score. Then, they will undergo systematic and targeted biopsy. PHI will be assessed before biopsy. At the end of patient inclusion, MR images will be assessed by the final version of the CAD system developed under the RHU PERFUSE programme. Key secondary outcomes include the prediction of ISUP grade ≥2 prostate cancer during a 3-year follow-up, and the number of biopsy procedures saved and ISUP grade ≥2 cancers missed by several diagnostic pathways combining PHI and MRI findings. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Comité de Protection des Personnes Nord Ouest III (ID-RCB: 2020-A02785-34). After publication of the results, access to MR images will be possible for testing other CAD systems. TRIAL REGISTRATION NUMBER: NCT04732156.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Inteligência Artificial , Humanos , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos
4.
Front Neurosci ; 15: 622423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762906

RESUMO

INTRODUCTION: Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). MATERIALS AND METHODS: Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. RESULTS: D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. CONCLUSION: The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.

6.
Front Mol Neurosci ; 12: 255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680859

RESUMO

Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.

7.
Brain Struct Funct ; 223(6): 2973-2988, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730825

RESUMO

Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640's nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Animais , Autorradiografia , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Gatos , Feminino , Técnicas In Vitro , Macaca mulatta , Masculino , Piperazinas/química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/química , Especificidade da Espécie , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA