Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; : e13297, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237118

RESUMO

Three distinct MN1::BEND2 fusion-positive tumors in pediatric patients. (A) Clinical course for each patient was variable in part due to differences in initial diagnosis. Each patient responded favorably to gross total resection and is stable at last follow-up. (B) Histologic diversity, lack of prominent classical astroblastoma features, and variable immunoexpression of key markers makes microscopic diagnosis challenging.

2.
Neuro Oncol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082676

RESUMO

BACKGROUND: The frequency and significance of IDH mutations in glioma across age groups is incompletely understood. We performed a multi-center retrospective age-stratified comparison of patients with IDH-mutant gliomas to identify age-specific differences in clinico-genomic features, treatments, and outcomes. METHODS: Clinical, histologic, and sequencing data from patients with IDH-mutant, grade 2-4 gliomas, were collected from collaborating institutions between 2013-2019. Patients were categorized as pediatric (<19y), YA (19-39y) or older adult (≥40y). Clinical presentation, treatment, histologic, and molecular features were compared across age categories using Fisher's exact test or analysis-of-variance. Cox proportional-hazards regression was used to determine association of age and other covariates with overall (OS) and progression-free survival (PFS). RESULTS: We identified a cohort of 379 patients (204 YA) with IDH-mutant glioma with clinical data. There were 155 (41%) oligodendrogliomas and 224 (59%) astrocytomas. YA showed significantly shorter PFS and shorter median time-to-malignant transformation (MT) compared to pediatric and adult groups, but no significant OS difference. Adjusting for pathology type, extent of resection, and upfront therapy in multivariable analysis, the YA group was independently prognostic of shorter PFS than pediatric and adult groups. Among astrocytomas, CDK4/6 copy number amplifications were associated with both shorter PFS and shorter OS. Among oligodendrogliomas, PIK3CA and CDKN2A/2B alterations were associated with shorter OS. CONCLUSIONS: IDH-mutant glioma YA patients had significantly shorter PFS and time to MT but did not differ in OS compared to pediatric and adult groups. Treatment approach varied significantly by patient age and warrant further study as addressable age-associated outcome drivers.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39067019

RESUMO

This study evaluates the diagnostic utility of OLIG2 immunohistochemistry for distinguishing between pediatric high-grade gliomas (pHGG) and embryonal tumors (ETs) of the CNS. Utilizing a retrospective pediatric cohort (1990-2021) of 56 CNS tumors, classified initially as primitive neuroectodermal tumors or CNS ET, we reclassified the cases based on WHO CNS5 criteria after comprehensive review and additional molecular testing that included next-generation sequencing and DNA methylation profiling. Our results indicate that OLIG2 immunopositivity was negative or minimal in a significant subset of pHGG cases (6 out of 11). At the same time, it showed diffuse expression in all cases of CNS neuroblastomas with FOXR2 activation (5/5), demonstrating its limited specificity in differentiating between pHGG and ET. Variable OLIG2 expression in other ETs, ATRT, and ETMR suggests the broader diagnostic implications of the marker. Furthermore, incidental findings of OLIG2 positivity in cases traditionally expected to be negative, such as medulloblastoma and ependymoma, introduce an additional layer of complexity. Together, these findings highlight the challenges of relying solely on OLIG2 immunostaining for accurate tumor classification in pediatric CNS neoplasms and underscore the importance of an integrated diagnostic approach.

4.
Neurooncol Adv ; 6(1): vdae070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863988

RESUMO

Background: There is no standard treatment for the recurrence of medulloblastoma, the most common malignant childhood brain tumor, and prognosis remains dismal. In this study, we introduce a regimen that is well-tolerated and effective at inducing remission. Methods: The primary objectives of this study were to assess tolerability of the regimen and overall response rate (ORR). A retrospective chart review of patients with recurrent medulloblastoma, treated at two institutions with a re-induction regimen of intravenous irinotecan and cyclophosphamide with oral temozolomide and etoposide, was performed. Demographic, clinicopathologic, toxicity, and response data were collected and analyzed. Results: Nine patients were identified. Median age was 5.75 years. Therapy was well-tolerated with no therapy-limiting toxicities and no toxic deaths. Successful stem cell collection was achieved in all 5 patients in whom it was attempted. ORR after 2 cycles was 78%. Three patients had a complete response, 4 patients had a partial response, 1 patient had stable disease, and 1 patient had progressive disease. Four patients are alive with no evidence of disease (NED), 2 patients are alive with disease, 2 patients have died of disease, and 1 patient died of toxicity related to additional therapy (NED at time of death). Conclusions: This regimen is well-tolerated and effective. Tumor response was noted in the majority of cases, allowing patients to proceed to additional treatment with no or minimal disease. Further study of this regimen in a clinical trial setting is an important next step.

5.
Front Pediatr ; 12: 1401737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938506

RESUMO

The mitochondrion is a multifunctional organelle that modulates multiple systems critical for homeostasis during pathophysiological stress. Variation in mitochondrial DNA (mtDNA) copy number (mtDNAcn), a key mitochondrial change associated with chronic stress, is an emerging biomarker for disease pathology and progression. mtDNAcn can be quantified from whole blood samples using qPCR to determine the ratio of mtDNA to nuclear DNA. However, the collection of blood samples in pediatric populations, particularly in infants and young children, can be technically challenging, yield much smaller volume samples, and can be distressing for the patients and their caregivers. Therefore, we have validated a mtDNAcn assay utilizing DNA from simple buccal swabs (Isohelix SK-2S) and report here it's performance in specimens from infants (age = <12 months). Utilizing qPCR to amplify ∼200 bp regions from two mitochondrial (ND1, ND6) and two nuclear (BECN1, NEB) genes, we demonstrated absolute (100%) concordance with results from low-pass whole genome sequencing (lpWGS). We believe that this method overcomes key obstacles to measuring mtDNAcn in pediatric populations and creates the possibility for development of clinical assays to measure mitochondrial change during pathophysiological stress.

6.
Mol Cancer Res ; 22(8): 721-729, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-38691518

RESUMO

Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/patologia , Criança , Feminino , Masculino , Pré-Escolar , Adolescente , Lactente , Adulto , Mutação , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732099

RESUMO

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Recidiva Local de Neoplasia , Humanos , Meduloblastoma/líquido cefalorraquidiano , Meduloblastoma/genética , Meduloblastoma/diagnóstico , Meduloblastoma/patologia , Meduloblastoma/diagnóstico por imagem , Biópsia Líquida/métodos , Recidiva Local de Neoplasia/líquido cefalorraquidiano , Recidiva Local de Neoplasia/genética , Adolescente , Neoplasias Cerebelares/líquido cefalorraquidiano , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Masculino , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Progressão da Doença , Imageamento por Ressonância Magnética
8.
Acta Neuropathol Commun ; 12(1): 63, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650040

RESUMO

Integration of molecular data with histologic, radiologic, and clinical features is imperative for accurate diagnosis of pediatric central nervous system (CNS) tumors. Whole transcriptome RNA sequencing (RNAseq), a genome-wide and non-targeted approach, allows for the detection of novel or rare oncogenic fusion events that contribute to the tumorigenesis of a substantial portion of pediatric low- and high-grade glial and glioneuronal tumors. We present two cases of pediatric glioneuronal tumors occurring in the occipital region with a CLIP2::MET fusion detected by RNAseq. Chromosomal microarray studies revealed copy number alterations involving chromosomes 1, 7, and 22 in both tumors, with Case 2 having an interstitial deletion breakpoint in the CLIP2 gene. By methylation profiling, neither tumor had a match result, but both clustered with the low-grade glial/glioneuronal tumors in the UMAP. Histologically, in both instances, our cases displayed characteristics of a low-grade tumor, notably the absence of mitotic activity, low Ki-67 labeling index and the lack of necrosis and microvascular proliferation. Glial and neuronal markers were positive for both tumors. Clinically, both patients achieved clinical stability post-tumor resection and remain under regular surveillance imaging without adjuvant therapy at the last follow-up, 6 months and 3 years, respectively. This is the first case report demonstrating the presence of a CLIP2::MET fusion in two pediatric low-grade glioneuronal tumors (GNT). Conservative clinical management may be considered for patients with GNT and CLIP2:MET fusion in the context of histologically low-grade features.


Assuntos
Neoplasias Encefálicas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Glioma/diagnóstico por imagem , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-met/genética
9.
Nat Commun ; 15(1): 270, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191555

RESUMO

Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Proteínas Hedgehog/genética , Meduloblastoma/genética , Proteômica , Cerebelo , Neoplasias Cerebelares/genética
11.
Res Sq ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961215

RESUMO

Outcomes for pediatric brain tumor patients remain poor, and there is optimism that chimeric antigen receptor (CAR) T cell therapy can improve prognosis. Here, we present interim results from the first six pediatric patients treated on an ongoing phase I clinical trial (NCT04510051) of IL13BBζ-CAR T cells delivered weekly into the lateral cerebral ventricles, identifying clonal expansion of endogenous CAR-negative CD8+ T cells in the cerebrospinal fluid (CSF) over time. Additionally, of the five patients evaluable for disease response, three experienced transient radiographic and/or clinical benefit not meeting protocol criteria for response. The first three patients received CAR T cells alone; later patients received lymphodepletion before the first infusion. There were no dose limiting toxicities (DLTs). Aside from expected cytopenias in patients receiving lymphodepletion, serious adverse events possibly attributed to CAR T cell infusion were limited to one episode of headache and one of liver enzyme elevation. One patient withdrew from treatment during the DLT period due to a Grade 3 catheter-related infection and was not evaluable for disease response, although this was not attributed to CAR T cell infusion. Importantly, scRNA- and scTCR-sequence analyses provided insights into CAR T cell interaction with the endogenous immune system. In particular, clonally expanded endogenous CAR- T cells were recovered from the CSF, but not the peripheral blood, of patients who received intraventricular IL13BBζ-CAR T cell therapy. Additionally, although immune infiltrates in CSF and post-therapy tumor did not generally correlate, a fraction of expanded T cell receptors (TCRs) was seen to overlap between CSF and tumor. This has important implications for what samples are collected on these trials and how they are analyzed. These initial findings provide support for continued investigation into locoregionally-delivered IL13BBζ-CAR T cells for children with brain tumors.

12.
Neurooncol Adv ; 5(1): vdad077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37461402

RESUMO

Background: Central nervous system tumors are the most common pediatric solid tumors and the most frequent cause of cancer-related morbidity in childhood. Significant advances in understanding the molecular features of these tumors have facilitated the development of liquid biopsy assays that may aid in diagnosis and monitoring response to therapy. In this report, we describe our comprehensive liquid biopsy platform for detection of genome-wide copy number aberrations, sequence variants, and gene fusions using cerebrospinal fluid (CSF) from pediatric patients with brain, spinal cord, and peripheral nervous system tumors. Methods: Cell-free DNA was isolated from the CSF from 55 patients, including 47 patients with tumors and 8 controls. Results: Abnormalities in cell-free DNA were detected in 24 (51%) patients including 11 with copy number alterations, 9 with sequence variants, and 7 with KIAA1549::BRAF fusions. Positive findings were obtained in patients spanning histologic subtypes, tumor grades, and anatomic locations. Conclusions: This study demonstrates the feasibility of employing this platform in routine clinical care in upfront diagnostic and monitoring settings. Future studies are required to determine the utility of this approach for assessing response to therapy and long-term surveillance.

13.
Nucleic Acids Res ; 51(16): 8744-8757, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334863

RESUMO

Chemical probing experiments have transformed RNA structure analysis, enabling high-throughput measurement of base-pairing in living cells. Dimethyl sulfate (DMS) is one of the most widely used structure probing reagents and has played a pivotal role in enabling next-generation single-molecule probing analyses. However, DMS has traditionally only been able to probe adenine and cytosine nucleobases. We previously showed that, using appropriate conditions, DMS can also be used to interrogate base-pairing of uracil and guanines in vitro at reduced accuracy. However, DMS remained unable to informatively probe guanines in cells. Here, we develop an improved DMS mutational profiling (MaP) strategy that leverages the unique mutational signature of N1-methylguanine DMS modifications to enable high-fidelity structure probing at all four nucleotides, including in cells. Using information theory, we show that four-base DMS reactivities convey greater structural information than current two-base DMS and SHAPE probing strategies. Four-base DMS experiments further enable improved direct base-pair detection by single-molecule PAIR analysis, and ultimately support RNA structure modeling at superior accuracy. Four-base DMS probing experiments are straightforward to perform and will broadly facilitate improved RNA structural analysis in living cells.


Assuntos
Guanina , Mutagênicos , RNA , Ésteres do Ácido Sulfúrico , Pareamento de Bases , Mutação , Conformação de Ácido Nucleico , RNA/genética , RNA/química , Mutagênicos/farmacologia , Ésteres do Ácido Sulfúrico/farmacologia
14.
Neuropathology ; 43(6): 441-456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37198977

RESUMO

Hyaline protoplasmic astrocytopathy (HPA) describes a rare histologic finding of eosinophilic, hyaline cytoplasmic inclusions in astrocytes, predominantly in the cerebral cortex. It has mainly been observed in children and adults with a history of developmental delay and epilepsy, frequently with focal cortical dysplasia (FCD), but the nature and significance of these inclusions are unclear. In this study, we review the clinical and pathologic features of HPA and characterize the inclusions and brain tissue in which they are seen in surgical resection specimens from five patients with intractable epilepsy and HPA compared to five patients with intractable epilepsy without HPA using immunohistochemistry for filamin A, previously shown to label these inclusions, and a variety of astrocytic markers including aldehyde dehydrogenase 1 family member L1 (ALDH1L1), SRY-Box Transcription Factor 9 (SOX9), and glutamate transporter 1/excitatory amino acid transporter 2 (GLT-1/EAAT2) proteins. The inclusions were positive for ALDH1L1 with increased ALDH1L1 expression in areas of gliosis. SOX9 was also positive in the inclusions, although to a lesser intensity than the astrocyte nuclei. Filamin A labeled the inclusions but also labeled reactive astrocytes in a subset of patients. The immunoreactivity of the inclusions for various astrocytic markers and filamin A as well as the positivity of filamin A in reactive astrocytes raise the possibility that these astrocytic inclusions may be the result of an uncommon reactive or degenerative phenomenon.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto , Humanos , Filaminas/metabolismo , Hialina , Encéfalo/patologia , Astrócitos/patologia
16.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090560

RESUMO

Chemical probing experiments have transformed RNA structure analysis, enabling high-throughput measurement of base-pairing in living cells. Dimethyl sulfate (DMS) is one of the most widely used structure probing reagents and has played a prominent role in enabling next-generation single-molecule probing analyses. However, DMS has traditionally only been able to probe adenine and cytosine nucleobases. We previously showed that, using appropriate conditions, DMS can also be used to interrogate base-pairing of uracil and guanines in vitro at reduced accuracy. However, DMS remained unable to informatively probe guanines in cells. Here, we develop an improved DMS mutational profiling (MaP) strategy that leverages the unique mutational signature of N 1 -methylguanine DMS modifications to enable robust, high-fidelity structure probing at all four nucleotides, including in cells. Using information theory, we show that four-base DMS reactivities convey greater structural information than comparable two-base DMS and SHAPE probing strategies. Four-base DMS experiments further enable improved direct base-pair detection by single-molecule PAIR analysis, and ultimately support RNA structure modeling at superior accuracy. Four-base DMS probing experiments are easily performed and will broadly facilitate improved RNA structural analysis in living cells.

17.
Nat Commun ; 14(1): 2300, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085539

RESUMO

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Assuntos
Ependimoma , Recidiva Local de Neoplasia , Criança , Humanos , Pré-Escolar , Recidiva Local de Neoplasia/genética , Cromossomos , Mapeamento Cromossômico , Ependimoma/genética , Ependimoma/patologia , Genoma , Cromatina/genética
18.
NPJ Precis Oncol ; 7(1): 21, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805676

RESUMO

We designed a liquid biopsy (LB) platform employing low-pass whole genome sequencing (LP-WGS) and targeted sequencing of cell-free (cf) DNA from plasma to detect genome-wide copy number alterations (CNAs) and gene fusions in pediatric solid tumors. A total of 143 plasma samples were analyzed from 19 controls and 73 patients, including 44 bone or soft-tissue sarcomas and 12 renal, 10 germ cell, five hepatic, and two thyroid tumors. cfDNA was isolated from plasma collected at diagnosis, during and after therapy, and/or at relapse. Twenty-six of 37 (70%) patients enrolled at diagnosis without prior therapy (radiation, surgery, or chemotherapy) had circulating tumor DNA (ctDNA), based on the detection of CNAs from LP-WGS, including 18 of 27 (67%) patients with localized disease and eight of 10 (80%) patients with metastatic disease. None of the controls had detectable somatic CNAs. There was a high concordance of CNAs identified by LP-WGS to CNAs detected by chromosomal microarray analysis in the matching tumors. Mutations identified in tumor samples with our next-generation sequencing (NGS) panel, OncoKids®, were also detected by LP-WGS of ctDNA in 14 of 26 plasma samples. Finally, we developed a hybridization-based capture panel to target EWSR1 and FOXO1 fusions from patients with Ewing sarcoma or alveolar rhabdomyosarcoma (ARMS), respectively. Fusions were detected in the plasma from 10 of 12 patients with Ewing sarcoma and in two of two patients with ARMS. Combined, these data demonstrate the clinical applicability of our LB platform to evaluate pediatric patients with a variety of solid tumors.

19.
Neuro Oncol ; 25(1): 199-210, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604410

RESUMO

BACKGROUND: The incidence and biology of IDH1/2 mutations in pediatric gliomas are unclear. Notably, current treatment approaches by pediatric and adult providers vary significantly. We describe the frequency and clinical outcomes of IDH1/2-mutant gliomas in pediatrics. METHODS: We performed a multi-institutional analysis of the frequency of pediatric IDH1/2-mutant gliomas, identified by next-generation sequencing (NGS). In parallel, we retrospectively reviewed pediatric IDH1/2-mutant gliomas, analyzing clinico-genomic features, treatment approaches, and outcomes. RESULTS: Incidence: Among 851 patients with pediatric glioma who underwent NGS, we identified 78 with IDH1/2 mutations. Among patients 0-9 and 10-21 years old, 2/378 (0.5%) and 76/473 (16.1%) had IDH1/2-mutant tumors, respectively. Frequency of IDH mutations was similar between low-grade glioma (52/570, 9.1%) and high-grade glioma (25/277, 9.0%). Four tumors were graded as intermediate histologically, with one IDH1 mutation. Outcome: Seventy-six patients with IDH1/2-mutant glioma had outcome data available. Eighty-four percent of patients with low-grade glioma (LGG) were managed observantly without additional therapy. For low-grade astrocytoma, 5-year progression-free survival (PFS) was 42.9% (95%CI:20.3-63.8) and, despite excellent short-term overall survival (OS), numerous disease-related deaths after year 10 were reported. Patients with high-grade astrocytoma had a 5-year PFS/OS of 36.8% (95%CI:8.8-66.4) and 84% (95%CI:50.1-95.6), respectively. Patients with oligodendroglioma had excellent OS. CONCLUSIONS: A subset of pediatric gliomas is driven by IDH1/2 mutations, with a higher rate among adolescents. The majority of patients underwent upfront observant management without adjuvant therapy. Findings suggest that the natural history of pediatric IDH1/2-mutant glioma may be similar to that of adults, though additional studies are needed.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Adolescente , Humanos , Criança , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Astrocitoma/genética , Mutação , Genômica , Isocitrato Desidrogenase/genética
20.
Nat Genet ; 54(12): 1881-1894, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471067

RESUMO

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.


Assuntos
Glioma , Humanos , Criança , Glioma/genética , Histonas/genética , Metionina , Mutação , Racemetionina , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA