Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 81(10): 10D725, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033918

RESUMO

Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

2.
Rev Sci Instrum ; 81(10): 10E135, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033997

RESUMO

The International Thermonuclear Experimental Reactor will have wide angle viewing systems and a divertor thermography diagnostic, which shall provide infrared coverage of the divertor and large parts of the first wall surfaces with spatial and temporal resolution adequate for operational purposes and higher resolved details of the divertor and other areas for physics investigations. We propose specifications for each system such that they jointly respond to the requirements. Risk analysis driven priorities for future work concern mirror degradation, interfaces with other diagnostics, radiation damage to refractive optics, reflections, and the development of calibration and measurement methods for varying optical and thermal target properties.

3.
Phys Rev Lett ; 96(18): 185001, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712367

RESUMO

Edge-localized modes (ELMs) are repetitive instabilities that occur in the outer region of tokamak plasmas. This Letter provides new information on and the implications of the evolution of the filament structures observed during ELMs in the MAST tokamak. The filaments exist for the time over which particles are being released into the scrape off layer. They start off at the plasma edge rotating at the velocity of the pedestal, and then decelerate toroidally and accelerate radially outwards. As the filaments propagate radially they remain aligned with the local magnetic field line.

4.
Phys Rev Lett ; 92(24): 245002, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15245091

RESUMO

This Letter provides information on the spatial and temporal structure of periodic eruptions observed in magnetically confined laboratory fusion plasmas, called edge-localized modes (ELMs), and highlights similarities with solar eruptions. Taken together, the observations presented in this Letter provide strong evidence for ELMs being associated with a filamentlike structure. These filaments are extended along a field line, are generated on a 100 micros time scale, erupt from the outboard side, and connect back into the plasma. Such structures are predicted by a theoretical model based on the "ballooning" instability, developed for both solar and tokamak applications.

5.
Phys Rev Lett ; 88(3): 035002, 2002 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-11801066

RESUMO

H-mode plasmas have been achieved on the MAST spherical tokamak at input power considerably higher than predicted by conventional threshold scalings. Following L- H transition, a clear improvement in energy confinement is obtained, exceeding recent international scalings even at densities approaching the Greenwald density limit. Transition is accompanied by an order-of-magnitude increase in edge-density gradient, a marked decrease in turbulence, the efficient conversion of internal electron Bernstein waves into free space waves, and the onset and saturation of edge poloidal rotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA