Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(20): 24238-24249, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988356

RESUMO

Single-crystalline niobium pentoxide nanowires (NWs) of length 10-15 µm and diameter 100-200 nm are synthesized by thermal oxidation of niobium substrates in a mild vacuum (3-10 mbar). Amorphous Al2O3 shells of varying thicknesses (10, 30, 40, and 50 nm) are deposited on top of the wires using atomic layer deposition. Bending tests of the uncoated Nb2O5 NWs and the Nb2O5/Al2O3 core-shell NWs are carried out inside a scanning electron microscope using a micromanipulator with a force measurement tip. The experimental deflection curves are modeled with Euler-Bernoulli (E-B) beam theory, and the Young's modulus is manipulated to determine the best fit. The Nb2O5 NWs with no shell are determined to have a Young's modulus of 67 ± 10 GPa, which agrees with the published data on Nb2O5 thin films. For core-shell NWs, only small deflections of the wires with 10 and 30 nm thick shells can be fitted with the E-B model when utilizing constant Young's modulus values of 67 GPa for the Nb2O5 core and about 160 GPa for the Al2O3 shell. When allowing for a change in the Young's modulus of the Al2O3 shell, the Young's modulus is determined to be at 120 ± 10 GPa for 10 nm and 145 ± 12 GPa for 30 nm at the highest applied load. For thicknesses of 40 nm and 50 nm, we observed a reduced but constant 120 ± 11 and 111 ± 10 GPa, respectively. Such behavior may result from structural disordering of the amorphous Al2O3 through reducing fractions of the densely packed polyhedra, while the fractions of the loosely packed polyhedra increase as a result of the increasing strain or the fabrication process. The increased disorder is associated with increased average interatomic spacing. Thus, the atomic bonding force and also the Young's modulus decrease.

2.
Nanoscale ; 12(2): 731-745, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829377

RESUMO

Due to the perfection of microelectronics fabrication, silicon is presently the preferred base material in the design of micromechanical devices. By contrast, steels are the dominating construction materials in macroscopic engineering. So, it is appealing to explore the potential of stainless steel nano objects. To this aim, we developed an electrochemical method for and investigated the fabrication of FeCr(C) nanowires and study their thermal reaction to design the microstructure. Wires, 50 to 150 nm in diameter, are produced by template-assisted electro-deposition. Under thermal annealing, they develop first a core-shell structure of an Fe-rich core and a dense Cr-rich carbide shell. The shell thickness is well controllable via the initial composition of the wires. In a later, second reaction stage, wires with rather thin shells (about 8 nm thickness) demonstrate a 'stacking inversion' that finally leads in a self-driven reaction to the formation of hollow carbide tubes decorated with iron rich clusters on their outer surface.

3.
RSC Adv ; 10(7): 3636-3645, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492640

RESUMO

Recent investigations of layered, rock salt and spinel-type manganese oxides in composite powder electrodes revealed the mutual stabilization of the Li-Mn-O compounds during electrochemical cycling. A novel approach of depositing such complex compounds as an active cathode material in thin-film battery electrodes is demonstrated in this work. It shows the maximum capacity of 226 mA h g-1 which is superior in comparison to that of commercial LiMn2O4 powder as well as thin films. Reactive ion beam sputtering is used to deposit films of a Li2MnO3-δ composition. The method allows for tailoring of the active layer's crystal structure by controlling the oxygen partial pressure during deposition. Electron diffractometry reveals the presence of layered monoclinic and defect rock salt structures, the former transforms during cycling and results in thin films with extraordinary electrochemical properties. X-ray photoelectron spectroscopy shows that a large amount of disorder on the cation sub-lattices has been incorporated in the structure, which is beneficial for lithium migration and cycle stability.

4.
Nanoscale Adv ; 2(7): 3002-3016, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132401

RESUMO

Several models can describe the nonlinear response of 1D objects to bending under a concentrated load. Successive stages consisting of geometrical and, additionally, mechanical non-linearity can be identified in moderately large extensions. We provide an explicit bending moment function with terms accounting for the linearity (Euler-Bernoulli), quasi-linearity, geometrical and finally, mechanical non-linearity as global features of a moderately large elastic deformation. We apply our method, also suitable for other metals, to the experimental data of Cu nanowires (NWs) with an aspect ratio of about 16 under different concentrated loadings. The spatial distribution of strain-hardening/softening along the wire or through the cross-section is also demonstrated. As a constitutive parameter, the strain-dependent stretch modulus represents, undoubtedly, changes in the material properties as the deformation progresses. At the highest load, the Green-Lagrange strain reaches a 12.5% extension with a corresponding ultra-high strength of about 7.45 GPa at the most strained volume still in the elastic regime. The determined stretch modulus indicates a significantly lower elastic response with an approximated Young's modulus (E ≅ 65 GPa) and a third-order elastic constant, C 111 ≅ -350 GPa. Surprisingly, these constants suggest a 25-35% of that of the bulk counterparts. Ultimately, the method not only provides a quantitative description of the bent Cu NWs, but also indicates the robustness of the theory of nonlinear elasticity.

5.
Nanoscale Adv ; 2(12): 5710-5727, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133865

RESUMO

One-dimensional objects as nanowires have been proven to be building blocks in novel applications due to their unique functionalities. In the realm of magnetic materials, iron-oxides form an important class by providing potential solutions in catalysis, magnetic devices, drug delivery, or in the field of sensors. The accurate composition and spatial structure analysis are crucial to describe the mechanical aspects and optimize strategies for the design of multi-component NWs. Atom probe tomography offers a unique analytic characterization tool to map the (re-)distribution of the constituents leading to a deeper insight into NW growth, thermally-assisted kinetics, and related mechanisms. As NW-based devices critically rely on the mechanical properties of NWs, the appropriate mechanical modeling with the resulting material constants is also highly demanded and can open novel ways to potential applications. Here, we report a compositional and structural study of quasi-ceramic one-dimensional objects: α-Fe ⊕ α-FeOOH(goethite) ⊕ Pt and α-Fe ⊕ α-Fe3O4(magnetite) ⊕ Pt core-shell NWs. We provide a theoretical model for the elastic behavior with terms accounting for the geometrical and mechanical nonlinearity, prior and subsequent to thermal treatment. The as-deposited system with a homogeneous distribution of the constituents demonstrates strikingly different structural and elastic features than that of after annealing, as observed by applying atom probe tomography, energy-dispersive spectroscopy, analytic electron microscopy, and a micromanipulator nanoprobe system. During annealing at a temperature of 350 °C for 20 h, (i) compositional partitioning between phases (α-Fe, α-Fe3O4 and in a minority of α-Fe2O3) in diffusional solid-solid phase transformations takes place, (ii) a distinct newly-formed shell formation develops, (iii) the degree of crystallinity increases and (iv) nanosized precipitation of evolving phases is detected leading to a considerable change in the description of the elastic material properties. The as-deposited nanowires already exhibit a significantly large maximum strain (1-8%) and stress (3-13 GPa) in moderately large bending tests, which become even more enhanced after the annealing treatment resulting at a maximum of about 2.5-10.5% and 6-18 GPa, respectively. As a constitutive parameter, the strain-dependent stretch modulus undoubtedly represents changes in the material properties as the deformation progresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA