Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 250: 126230, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234616

RESUMO

The Swiss disposal concept foresees that carbon-14 (14C) is predominantly released from irradiated steel disposed of in a cement-based repository for low- and intermediate-level radioactive waste. To predict how 14C migrates in the cementitious environment of the repository near field and subsequently in the host rock, knowledge about the carbon speciation during anoxic steel corrosion in alkaline conditions is therefore essential. To this end, batch-type corrosion experiments with carbon-containing zero-valent iron (ZVI) powders subject to oxidative pre-treatments were carried out in NaOH solution at pH 11 and 12.5. Alkanes and alkenes (C1-C7) were identified in the gas phase and produced on the iron surface by a Fischer-Tropsch type mechanism. The kind of oxidative pre-treatment has an effect on the production rate of hydrocarbons (HCs). In the liquid phase, carboxylic acids were identified and produced during the oxidative pre-treatment of the ZVI powders. They are released instantaneously from the oxide layer upon contact with the alkaline solution. The kind of oxidative treatment and the exposure time to oxic conditions directly influence the amount of carboxylic acids accommodated in the oxide layer.


Assuntos
Carbono/química , Ferro/química , Poluentes Químicos da Água/química , Radioisótopos de Carbono , Corrosão , Compostos Orgânicos , Oxirredução , Aço/química
2.
ACS Nano ; 8(1): 818-26, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24354268

RESUMO

A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device array preparation. The in situ reaction and washing procedures make this approach a powerful one for the fabrication of multicomponent complex nanomaterials using a soft bottom-up approach.

3.
Lab Chip ; 13(12): 2328-36, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23639996

RESUMO

We have developed an integrated microfluidic platform for producing 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) in continuous flow from a single bolus of radioactive isotope solution, with constant product yields achieved throughout the operation that were comparable to those reported for commercially available vessel-based synthesisers (40-80%). The system would allow researchers to obtain radiopharmaceuticals in a dose-on-demand setting within a few minutes. The flexible architecture of the platform, based on a modular design, can potentially be applied to the synthesis of other radiotracers that require a two-step synthetic approach, and may be adaptable to more complex synthetic routes by implementing additional modules. It can therefore be employed for standard synthesis protocols as well as for research and development of new radiopharmaceuticals.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Compostos Radiofarmacêuticos/síntese química , Desenho de Equipamento , Fluordesoxiglucose F18/síntese química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Tomografia por Emissão de Pósitrons , Pressão , Hidróxido de Sódio/química , Temperatura
4.
ACS Nano ; 7(1): 183-90, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23211008

RESUMO

We present a novel microchip-based approach to combine the synthesis, characterization, and utilization of different functional materials on a single platform. A two-layer microfluidic device comprising 10 parallel actuated reaction chambers with volumes of a few hundred picoliters is used to localize and confine the synthesis, while the surfaces of the reaction chambers comprise an electrode array for direct integration and further characterization of the created crystalline assemblies without the need for further manipulation or positioning devices. First we visualized and evaluated the dynamics of our method by monitoring the formation of a fluorescent metal-organic complex (Zn(bix)). Next, we induced the site-specific growth of two types of organic conductive crystals, AuTTF and AgTCNQ, directly onto the electrode arrays in one- and two-step reactions, respectively. The performance of the created AgTCNQ crystals as memory elements was thoroughly examined. Moreover, we proved for first time that AuTTF composites can be used as label-free sensing elements.


Assuntos
Condutometria/instrumentação , Cristalização/instrumentação , Microquímica/métodos , Técnicas Analíticas Microfluídicas/métodos , Micromanipulação/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/instrumentação , Tamanho da Partícula , Integração de Sistemas
5.
Anal Bioanal Chem ; 405(8): 2417-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23232959

RESUMO

The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.


Assuntos
Água Doce/química , Técnicas Analíticas Microfluídicas/métodos , Compostos Orgânicos Voláteis/química , Automação , Técnicas Analíticas Microfluídicas/instrumentação , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA