Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(7): 1132-1144, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125464

RESUMO

Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as ß diversity change through transient and equilibrium states.


Assuntos
Pradaria , Nutrientes , Nitrogênio , Ecossistema
2.
Oecologia ; 196(4): 1061-1072, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34338862

RESUMO

Processes that change with density are inherent in all populations, yet quantifying density dependence with empirical data remains a challenge. This is especially true for animals recruiting in patchy landscapes because heterogeneity in habitat quality in combination with habitat choice can obscure patterns expected from density dependence. Mosquitoes (Diptera: Culicidae) typically experience strong density dependence when larvae compete for food, however, effects vary across species and contexts. If populations experience intense intraspecific density-dependent mortality then overcompensation can occur, where the number of survivors declines at high densities producing complex endogenous dynamics. To seek generalizations about density dependence in a widespread species of Arctic mosquito, Aedes nigripes, we combined a laboratory experiment, field observations, and modeling approaches. We evaluated alternative formulations of discrete population models and compared best-performing models from our lab study to larval densities from ponds in western Greenland. Survivorship curves from the lab were the best fit by a Hassell model with compensating density dependence (equivalent to a Beverton-Holt model) where peak recruitment ranged from 8 to 80 mosquitoes per liter depending on resource supply. In contrast, our field data did not show a signal of strong density dependence, suggesting that other processes such as predation may lower realized densities in nature, and that expected patterns may be obscured because larval abundance covaries with resources (cryptic density dependence). Our study emphasizes the importance of covariation between the environment, habitat choice, and density dependence in understanding population dynamics across landscapes, and demonstrates the value of pairing lab and field studies.


Assuntos
Aedes , Animais , Larva , Densidade Demográfica , Dinâmica Populacional , Comportamento Predatório
3.
Ecology ; 101(10): e03135, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691414

RESUMO

Population dynamics are shaped by species interactions with resources, competitors, enemies, and environmental fluctuations that alter the strength of these interactions. We used a food web approach to investigate the population dynamics of an abundant Arctic mosquito species, Aedes nigripes (Diptera: Culicidae). Specifically, we evaluated the importance of bottom-up variation in aquatic biofilms (food) and top-down predation from diving beetles (Colymbetes dolabratus, Coleoptera: Dytiscidae) on mosquito population performance. In spring 2018, we tracked mosquito and predator populations across eight ponds in western Greenland, measured biofilm productivity with standardized samplers, and estimated grazing pressure by invertebrate consumers with an in situ exclosure experiment. We also assessed the quality of biofilms as nutrition for mosquito larvae and evaluated pond attributes that might influence biofilm productivity and food quality. Our results indicated that mosquito population dynamics were more related to resource quality and intraspecific competition than to the density of predaceous diving beetles. Ponds with better quality biofilm tended to have more hatching larvae and those populations experienced higher per capita mortality. This aggregation of larvae in what would otherwise be the best mosquito ponds was enough to produce relatively low fitness. Thus, the landscape would support more mosquitoes if they instead distributed themselves to match predictions of the ideal free distribution. Although mortality rates were highest in ponds with the highest initial densities, the increased mortality was not generally enough to compensate for initial abundance, and 78% of the variation in the density of mosquitoes emerging from ponds was explained by the initial number of larvae in a pond. Resource quality was a strong predictor of consumer abundance, yet there was no evidence that biofilm grazing pressure was greater in ponds where mosquito density was higher. Collectively, our results suggest that mosquito ponds in western Greenland are a mosaic of source and pseudo-sink populations structured by oviposition tendencies, biofilm resource quality, and density-dependent larval mortality.


Assuntos
Aedes , Besouros , Animais , Feminino , Groenlândia , Larva , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA