Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(46): 10016-10024, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37950697

RESUMO

Metal-free triplet photosensitizers are ubiquitous in photocatalysis, photodynamic therapy, photovoltaics, and so forth. Their photosensitization efficiency strongly depends on the ability of the low-lying excited spin-triplet to be populated through intersystem crossing. Small singlet-triplet gaps and considerable spin-orbit coupling between the excited spin-singlet and spin-triplet facilitate efficient intersystem crossing. Azulene (Az), a classic example of Anti-Kasha's blue emitter with considerable fluorescence quantum yield, holds great promise because of its chemical stability, rich electronic properties, and high structural rigidity. Here, we provide computationally modeled Az-derived photosensitizers, namely, Az-CHO and Az-CHS, implementing polarization consistent time-dependent optimally tuned range-separated hybrid. Calculations reveal energetic reordering of low-lying ππ* and nπ* singlet states between Az-CHO and Az-CHS and, thereby, rendering the latter to a nonfluorescent one. Importantly, a small singlet-triplet gap and large spin-orbit coupling for Az-CHX with X = O and S produce remarkably high intersystem crossing rates. Furthermore, strong nonadiabatic coupling between the S1(nπ*) and S2(ππ*) in Az-CHS due to substantially smaller energy gap causes enhanced S1 population via fast internal conversion. These research findings provide new insights into the development of functional Az and or related heavy-atom-free small organic molecule-based triplet photosensitizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA