Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; : e5255, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225116

RESUMO

The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.

2.
bioRxiv ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39257785

RESUMO

Chronic kidney disease (CKD) is a progressive disorder marked by a decline in kidney function. Obesity and sedentary behavior contribute to the development of CKD, though mechanisms by which this occurs are poorly understood. This knowledge gap is worsened by the lack of a reliable murine CKD model that does not rely on injury, toxin, or gene deletion to induce a reduction in kidney function. High-fat diet (HFD) feeding alone is insufficient to cause reduced kidney function until later in life. Here, we employed a small mouse cage (SMC), a recently developed mouse model of sedentariness, to study its effect on kidney function. Wildtype C57BL/6J male mice were housed in sham or SMC housing for six months with HFD in room (22°C) or thermoneutral (30°C) conditions. Despite hyperinsulinemia induced by the SMC+HFD intervention, kidneys from these mice displayed normal glomerular filtration rate (GFR). However, the kidneys showed early signs of kidney injury, including increases in Col1a1 and NGAL transcripts, as well as fibrosis by histology, primarily in the inner medullary/papilla region. High-resolution respirometry and fluorometry experiments showed no statistically significant changes in the capacities for respiration, ATP synthesis, or electron leak. These data confirm the technical challenge in modeling human CKD. They further support the notion that obesity and a sedentary lifestyle make the kidneys more vulnerable, but additional insults are likely required for the pathogenesis of CKD.

3.
Free Radic Biol Med ; 224: 325-334, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178923

RESUMO

Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 µM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.

4.
Am J Physiol Heart Circ Physiol ; 325(5): H1088-H1098, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712922

RESUMO

Cigarette smoke exposure is a well-known risk factor for developing numerous chronic health conditions, including pulmonary disease and cardiometabolic disorders. However, the cellular mechanisms mediating the toxicity of cigarette smoke in extrapulmonary tissues are still poorly understood. Therefore, the purpose of this study was to characterize the acute dose-dependent toxicity of cigarette smoke on mitochondrial metabolism by determining the susceptibility and sensitivity of mitochondrial respiration from murine skeletal (gastrocnemius and soleus) and cardiac muscles, as well as the aorta to cigarette smoke concentrate (CSC). In all tissues, exposure to CSC inhibited tissue-specific respiration capacity, measured by high-resolution respirometry, according to a biphasic pattern. With a break point of 451 ± 235 µg/mL, the aorta was the least susceptible to CSC-induced mitochondrial respiration inhibition compared with the gastrocnemius (151 ± 109 µg/mL; P = 0.008, d = 2.3), soleus (211 ± 107 µg/mL; P = 0.112; d = 1.7), and heart (94 ± 51 µg/mL; P < 0.001; d = 2.6) suggesting an intrinsic resistance of the vascular smooth muscle mitochondria to cigarette smoke toxicity. In contrast, the cardiac muscle was the most susceptible and sensitive to the effects of CSC, demonstrating the greatest decline in tissue-specific respiration with increasing CSC concentration (P < 0.001, except the soleus). However, when normalized to citrate synthase activity to account for differences in mitochondrial content, cardiac fibers' sensitivity to cigarette smoke inhibition was no longer significantly different from both fast-twitch gastrocnemius and slow-twitch soleus muscle fibers, thus suggesting similar mitochondrial phenotypes. Collectively, these findings established the acute dose-dependent toxicity of cigarette smoke on oxidative phosphorylation in permeabilized tissues involved in the development of smoke-related cardiometabolic diseases.NEW & NOTEWORTHY Despite numerous investigations into the mechanisms underlying cigarette smoke-induced mitochondrial dysfunction, no studies have investigated the tissue-specific mitochondrial toxicity to cigarette smoke. We demonstrate that, while aorta is least sensitive and susceptible to cigarette smoke-induced toxicity, the degree of cigarette smoke-induced toxicity in striated muscle depends on the tissue-specific mitochondrial content. We conclude that while the mitochondrial content influences cigarette smoke-induced toxicity in striated muscles, aorta is intrinsically protected against cigarette smoke-induced mitochondrial toxicity.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Camundongos , Humanos , Animais , Fosforilação Oxidativa , Músculo Esquelético/metabolismo , Respiração Celular/fisiologia
5.
Biochim Biophys Acta Bioenerg ; 1864(3): 148973, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972770

RESUMO

The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s-1.mg-1 and CSC:27.5 ± 12.0 pmolO2.s-1.mg-1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s-1.mg-1 and CSC:44.6 ± 11.1 pmolO2.s-1.mg-1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.


Assuntos
Fumar Cigarros , Fibras Musculares de Contração Rápida , Camundongos , Animais , Fibras Musculares de Contração Rápida/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Transferência de Energia
6.
Life Sci ; 315: 121376, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646379

RESUMO

Epidemiological and clinical evidence suggests that cigarette smoke exposure alters glucose and fatty acid metabolism, leading to greater susceptibility to metabolic disorders. However, the effects of cigarette smoke exposure on mitochondrial substrate oxidation in the skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the acute effects of cigarette smoke on mitochondrial respiratory capacity, sensitivity, and concurrent utilization of palmitoylcarnitine (PC), a long-chain fatty acid, and pyruvate, a product of glycolysis, in permeabilized gastrocnemius and soleus muscle fibers exposed to an acute (1 h) dose (4 %) of cigarette smoke concentrate. Cigarette smoke decreased both mitochondrial respiratory capacity (CONTROL: 50.4 ± 11.8 pmolO2/s/mgwt and SMOKE: 22.3 ± 4.4 pmolO2/s/mgwt, p < 0.01) and sensitivity for pyruvate (CONTROL: 0.10 ± 0.04 mM and SMOKE: 0.11 ± 0.04 mM, p < 0.01) in the gastrocnemius muscle. In the soleus, only the sensitivity for pyruvate-stimulated mitochondrial respiration trended toward a decrease (CONTROL: 0.11 ± 0.04 mM and SMOKE: 0.23 ± 0.15 mM, p = 0.08). In contrast, cigarette smoke did not significantly alter palmitoylcarnitine-stimulated mitochondrial respiration in either muscle. In the control condition, pyruvate-supported respiration was inhibited by the concurrent addition of palmitoylcarnitine in the fast-twitch gastrocnemius muscle (-27.1 ± 19.7 %, p < 0.05), but not in the slow-twitch soleus (-9.2 ± 17.0 %). With cigarette smoke, the addition of palmitoylcarnitine augmented the maximal respiration rate stimulated by the concurrent addition of pyruvate in the gastrocnemius (+18.5 ± 39.3 %, p < 0.05). However, cigarette smoke still significantly impaired mitochondrial respiratory capacity with combined substrates compared to control (p < 0.05). Our findings underscore that cigarette smoke directly impairs mitochondrial respiration of carbohydrate-derived substrates and is a primary mechanism underlying cigarette smoke-induced muscle dysfunction, which leads to a vicious cycle involving excess glucose conversion into fatty acids and lipotoxicity.


Assuntos
Fumar Cigarros , Palmitoilcarnitina , Palmitoilcarnitina/metabolismo , Palmitoilcarnitina/farmacologia , Músculo Esquelético/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Piruvatos/farmacologia , Mitocôndrias Musculares/metabolismo
7.
Free Radic Biol Med ; 195: 261-269, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586455

RESUMO

The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada , Fumar Cigarros/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos Finais de Glicação Avançada/genética , Produtos Finais de Glicação Avançada/metabolismo
8.
J Appl Physiol (1985) ; 132(3): 581-592, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019775

RESUMO

The long-term sequelae of the coronavirus disease 2019 (COVID-19) are multifaceted and, besides the lungs, impact other organs and tissues, even in cases of mild infection. Along with commonly reported symptoms such as fatigue and dyspnea, a significant proportion of those with prior COVID-19 infection also exhibit signs of cardiac damage, muscle weakness, and ultimately, poor exercise tolerance. This review provides an overview of evidence indicating cardiac impairments and persistent endothelial dysfunction in the peripheral vasculature of those previously infected with COVID-19, irrespective of the severity of the acute phase of illness. In addition, V̇o2peak appears to be lower in convalescent patients, which may stem, in part, from alterations in O2 transport such as impaired diffusional O2 conductance. Together, the persistent multi-organ dysfunction induced by COVID-19 may set previously healthy individuals on a trajectory towards frailty and disease. Given the large proportion of individuals recovering from COVID-19, it is critically important to better understand the physical sequelae of COVID-19, the underlying biological mechanisms contributing to these outcomes, and the long-term effects on future disease risk. This review highlights relevant literature on the pathophysiology post-COVID-19 infection, gaps in the literature, and emphasizes the need for the development of evidence-based rehabilitation guidelines.


Assuntos
COVID-19 , Dispneia , Fadiga , Humanos , Músculos , SARS-CoV-2
9.
Am J Physiol Endocrinol Metab ; 321(1): E80-E89, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121449

RESUMO

Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/ultraestrutura , Nicotiana , Fumaça/efeitos adversos , Animais , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Enfisema/patologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Estresse Oxidativo , Consumo de Oxigênio , Músculo Quadríceps/ultraestrutura , Comportamento Sedentário
10.
Magn Reson Imaging ; 57: 118-123, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471329

RESUMO

It is often difficult to accurately localize small arteries in images of peripheral organs, and even more so with vascular abnormality vasculatures, including collateral arteries, in peripheral artery disease (PAD). This poses a challenge for manually sampling arterial input function (AIF) in quantifying dynamic contrast-enhanced (DCE) MRI data of peripheral organs. In this study, we designed a multi-step screening approach that utilizes both the temporal and spatial information of the dynamic images, and is presumably suitable for localizing small and unpredictable peripheral arteries. In 41 DCE MRI datasets acquired from human calf muscles, the proposed method took <5 s on average for sampling AIF for each case, much more efficient than the manual sampling method; AIFs by the two methods were comparable, with Pearson's correlation coefficient of 0.983 ±â€¯0.004 (p-value < 0.01) and relative difference of 2.4% ±â€¯2.6%. In conclusion, the proposed temporospatial-feature based method enables efficient and accurate sampling of AIF from peripheral arteries, and would improve measurement precision and inter-observer consistency for quantitative DCE MRI of peripheral tissues.


Assuntos
Artérias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Algoritmos , Artefatos , Automação , Simulação por Computador , Meios de Contraste , Feminino , Voluntários Saudáveis , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Variações Dependentes do Observador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA