Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242756

RESUMO

At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.

2.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559257

RESUMO

The inhaled route is regarded as one of the most promising strategies as a treatment against pulmonary infections. However, the delivery of drugs in a dry powder form remains challenging. In this work, we have used alginate to form microparticles containing an antibiotic model (colistin sulfate). The alginate microparticles were generated by atomization technique, and they were characterized by antimicrobial in vitro studies against Pseudomonas aeruginosa. Optimization of different parameters allowed us to obtain microparticles as a dry powder with a mean size (Feret diameter) of 4.45 ± 1.40 µm and drug loading of 8.5 ± 1.50%. The process developed was able to concentrate most of the colistin deposits on the surface of the microparticles, which could be observed by SEM and a Dual-Beam microscope. This produces a fast in vitro release of the drug, with a 100% release achieved in 4 h. Physicochemical characterization using the FTIR, EDX and PXRD techniques revealed information about the change that occurs from the amorphous to a crystalline form of colistin. Finally, the cytotoxicity of microparticles was tested using lung cell lines (A549 and Calu-3). Results of the study showed that alginate microparticles were able to inhibit bacterial growth while displaying non-toxicity toward lung cells.

3.
Carbohydr Polym ; 233: 115850, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059901

RESUMO

Chitosan aerogels were obtained after using supercritical carbon dioxide to dry physical hydrogels, studying the effect of the rheological behavior of hydrogels and solutions on the final aerogels properties. An increase on the solutions pseudoplasticity increased the subsequent hydrogels physical entanglement, without showing a significant effect on aerogels morphology (nanoporous) and textural properties (pores of about 10 nm). However, an increase of hydrogel physical entanglement promoted the formation of aerogels with a higher compressive strength (from 0.2 to 0.80 MPa) and higher thermal decomposition range, while decreasing the porosity (from 90 % to 94 %). Aerogels stress-strain responses were also successfully fitted using a hyperelastic equation with three adjustable parameters (Yeoh), showing that this type of models must be taken into account when large stresses are studied.

4.
Biotechnol Prog ; 23(4): 940-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17625911

RESUMO

The aim of cell therapy is to replace, repair, or enhance the function of damaged tissues or organs. Several factors complicate the development of cellular therapies. Of primary importance is protection of the implanted cells from the host's immune system. Cells are encapsulated in selectively semipermeable and biocompatible membranes that block entry of immune mediators but allow outward diffusion of active molecules produced by the cells. The immobilization of mesenchymal stem cells and monocytes, in micrometric (30-60 microm) alginate-barium microcapsules based on atomization processes, has been achieved successfully. This size is necessary to the administration of microcapsules via injection (Hamilton syringe with a needle size of 100 microm) and aerosol. Microencapsulated cells survive at least 2 weeks after preparation in vitro.


Assuntos
Materiais Biocompatíveis/química , Biotecnologia/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/citologia , Monócitos/citologia , Alginatos/química , Bário/química , Células da Medula Óssea , Cápsulas/metabolismo , Movimento Celular , Células Cultivadas , Difusão , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Sistema Imunitário , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA