Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(5): e0174823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37795985

RESUMO

IMPORTANCE: Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Amiloide/metabolismo , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia
3.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993475

RESUMO

Staphylococcus aureus secretes phenol-soluble modulins (PSMs), a family of small, amphipathic, secreted peptides with multiple biologic activities. Community-acquired S. aureus strains produce high levels of PSMs in planktonic cultures, and PSM alpha peptides have been shown to augment the release of extracellular membrane vesicles (MVs). We observed that amyloids, aggregates of proteins characterized by a fibrillar morphology and stained with specific dyes, co-purified with MVs harvested from cell-free culture supernatants of community-acquired S. aureus strains. δ-toxin was a major component of amyloid fibrils that co-purified with strain LAC MVs, and δ-toxin promoted the production of MVs and amyloid fibrils in a dose-dependent manner. To determine whether MVs and amyloid fibrils were generated under in vivo conditions, we inoculated mice with S. aureus harvested from planktonic cultures. Bacterial MVs could be isolated and purified from lavage fluids recovered from infected animals. Although δ-toxin was the most abundant PSM in lavage fluids, amyloid fibrils could not be detected in these samples. Our findings expand our understanding of amyloid fibril formation in S. aureus cultures, reveal important roles of δ-toxin in amyloid fibril formation and MV biogenesis, and demonstrate that MVs are generated in vivo in a staphylococcal infection model. Importance: Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene ( hld ). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.

4.
Proc Natl Acad Sci U S A ; 120(8): e2211689120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787359

RESUMO

Diverse organisms secrete amphipathic biomolecules for competitive gains. However, how cells cope with producing these membrane-permeabilizing molecules is unclear. We focused on the PSM family of secreted amphipathic peptides in the pathogen Staphylococcus aureus that uses two ABC transporters, PmtCD and AbcA, to export peptides across the bacterial cell membrane. We found that increased peptide hydrophobicity favors PSM secretion through PmtCD over AbcA and that only PmtCD protected cells against amphipathic peptides. We propose a two-system model in which PmtCD and AbcA independently export PSMs from either membrane or cytosolic environments, respectively. Our model provides a rationale for the encoding of multiple transport systems on diverse biosynthetic gene clusters used to produce distinct amphipathic molecules. In addition, our data serve as a guide for selectively blocking PSM secretion to achieve antimicrobial or antivirulence approaches and to disrupt established roles of PSM-mediated virulence.


Assuntos
Peptídeos , Infecções Estafilocócicas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos/metabolismo , Infecções Estafilocócicas/microbiologia , Virulência
6.
J Extracell Vesicles ; 11(4): e12212, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384360

RESUMO

Bacterial membrane vesicles (MVs) have recently gained much attention and have been shown to carry a wide diversity of secreted bacterial components. However, it is poorly understood whether MV carriage is an indispensable requirement for a cargo's function. Bacteriocins as weapons of bacterial warfare shape the composition of microbial communities. Many bacteriocins have pronounced hydrophobicity that is imposed by their mechanism of action, but how they diffuse through aqueous environments to reach their target competitors is not known. Here we show that antimicrobial competitive activity of an exemplary hydrophobic bacteriocin of the thiopeptide antibiotic family, micrococcin P1 (MP1), is dependent on incorporation into MVs, which were found to carry MP1 at high concentrations. In contrast, MP1 without MV association was poorly active due to low solubility. Furthermore, we provide previously unavailable evidence that MVs fuse with a Gram-positive bacterium's cytoplasmic membrane, in this case to deliver a bacteriocin to its intracellular target. Our findings demonstrate how bacteria overcome the problem associated with secreting hydrophobic small molecules and delivering them to their target and show that MVs have a key function in bacterial warfare. Furthermore, our study provides hitherto rare evidence that MVs provide an essential rather than merely accessory function in bacterial physiology.


Assuntos
Bacteriocinas , Antibacterianos/farmacologia , Bactérias , Bacteriocinas/farmacologia
7.
mBio ; 10(1)2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622190

RESUMO

Commensal bacteria in the human nasal cavity are known to suppress opportunistic pathogen colonization by competing for limited space and nutrients. It has become increasingly apparent that some commensal bacteria also produce toxic compounds that directly inhibit or kill incoming competitors. Numerous studies suggest that microbial species-specific interactions can affect human nasal colonization by the opportunistic pathogen Staphylococcus aureus However, the complex and dynamic molecular interactions that mediate these effects on S. aureus nasal colonization are often difficult to study and remain poorly understood. Here, we show that Corynebacterium pseudodiphtheriticum, a common member of the normal nasal microbiota, mediates contact-independent bactericidal activity against S. aureus, including methicillin-resistant S. aureus (MRSA). Bacterial interaction assays revealed that S. aureus isolates that were spontaneously resistant to C. pseudodiphtheriticum killing could be recovered at a low frequency. To better understand the pathways associated with killing and resistance, a S. aureus transposon mutant library was utilized to select for resistant mutant strains. We found that insertional inactivation of agrC, which codes for the sensor kinase of the Agr quorum sensing (Agr QS) system that regulates expression of many virulence factors in S. aureus, conferred resistance to killing. Analysis of the spontaneously resistant S. aureus isolates revealed that each showed decreased expression of the Agr QS components. Targeted analysis of pathways regulated by Agr QS revealed that loss of the phenol-soluble modulins (PSMs), which are effectors of Agr QS, also conferred resistance to bactericidal activity. Transmission electron microscopy analysis revealed that C. pseudodiphtheriticum induced dramatic changes to S. aureus cell surface morphology that likely resulted in cell lysis. Taken together, these data suggest that C. pseudodiphtheriticum-mediated killing of S. aureus requires S. aureus virulence components. While S. aureus can overcome targeted killing, this occurs at the cost of attenuated virulence; loss of Agr QS activity would phenotypically resemble a S. aureus commensal state that would be unlikely to be associated with disease. Commensal competition resulting in dampened virulence of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.IMPORTANCE While some individuals are nasally colonized with S. aureus, the underlying factors that determine colonization are not understood. There is increasing evidence that indicates that resident bacteria play a role; some commensal species can eradicate S. aureus from the nasal cavity. Among these, Corynebacterium pseudodiphtheriticum can eliminate S. aureus from the human nose. We sought to understand this phenomenon at a molecular level and found that C. pseudodiphtheriticum produces a factor(s) that specifically kills S. aureus While resistant S. aureus isolates were recovered at a low frequency, resistance came at the cost of attenuated virulence in these strains. Molecular dissection of the specific strategies used by C. pseudodiphtheriticum to kill S. aureus could lead to the development of novel treatments or therapies. Furthermore, commensal competition that requires virulence components of the competitor may represent an exciting and unexplored possibility for development of novel antimicrobial compounds.


Assuntos
Antibiose , Corynebacterium/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Corynebacterium/isolamento & purificação , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Humanos , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Cavidade Nasal/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/ultraestrutura , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Nature ; 562(7728): 532-537, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305736

RESUMO

Probiotic nutrition is frequently claimed to improve human health. In particular, live probiotic bacteria obtained with food are thought to reduce intestinal colonization by pathogens, and thus to reduce susceptibility to infection. However, the mechanisms that underlie these effects remain poorly understood. Here we report that the consumption of probiotic Bacillus bacteria comprehensively abolished colonization by the dangerous pathogen Staphylococcus aureus in a rural Thai population. We show that a widespread class of Bacillus lipopeptides, the fengycins, eliminates S. aureus by inhibiting S. aureus quorum sensing-a process through which bacteria respond to their population density by altering gene regulation. Our study presents a detailed molecular mechanism that underlines the importance of probiotic nutrition in reducing infectious disease. We also provide evidence that supports the biological significance of probiotic bacterial interference in humans, and show that such interference can be achieved by blocking a pathogen's signalling system. Furthermore, our findings suggest a probiotic-based method for S. aureus decolonization and new ways to fight S. aureus infections.


Assuntos
Bacillus/fisiologia , Probióticos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Animais , Feminino , Lipopeptídeos/biossíntese , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Camundongos , Modelos Animais , Probióticos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Esporos Bacterianos/metabolismo , Staphylococcus aureus/metabolismo , Tailândia
9.
J Infect Dis ; 217(7): 1153-1159, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29351622

RESUMO

Antimicrobial peptides (AMPs) constitute an important part of innate host defense. Possibly limiting the therapeutic potential of AMPs is the fact that bacteria have developed AMP resistance mechanisms during their co-evolution with humans. However, there is no direct evidence that AMP resistance per se is important during an infection. Here we show that the Staphylococcus aureus Pmt ABC transporter defends the bacteria from killing by important human AMPs and elimination by human neutrophils. By showing that Pmt contributes to virulence during skin infection in an AMP-dependent manner, we provide evidence that AMP resistance plays a key role in bacterial infection.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Neutrófilos/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Farmacorresistência Bacteriana , Humanos , Camundongos , Conformação Proteica , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Catelicidinas
10.
Cell Host Microbe ; 22(5): 581-583, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120739

RESUMO

Pyruvate dehydrogenase (PDH) plays a well-known metabolic role inside cells. In this issue of Cell Host & Microbe, Grayczyk et al. (2017) show that the bacterial pathogen Staphylococcus aureus unexpectedly secretes and repurposes the lipoylated E2 subunit of PDH to suppress TLR-mediated activation of host macrophages by bacterial lipoproteins.


Assuntos
Di-Hidrolipoamida Desidrogenase , Complexo Piruvato Desidrogenase , Acetiltransferases , Staphylococcus aureus
11.
Nat Rev Drug Discov ; 16(7): 457-471, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28337021

RESUMO

The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Animais , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Desenho de Fármacos , Farmacorresistência Bacteriana , Humanos , Fatores de Virulência
12.
mBio ; 7(5)2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27795396

RESUMO

The virulence of many bacterial pathogens, including the important human pathogen Staphylococcus aureus, depends on the secretion of frequently large amounts of toxins. Toxin production involves the need for the bacteria to make physiological adjustments for energy conservation. While toxins are primarily targets of gene regulation, such changes may be accomplished by regulatory functions of the toxins themselves. However, mechanisms by which toxins regulate gene expression have remained poorly understood. We show here that the staphylococcal phenol-soluble modulin (PSM) toxins have gene regulatory functions that, in particular, include inducing expression of their own transport system by direct interference with a GntR-type repressor protein. This capacity was most pronounced in PSMs with low cytolytic capacity, demonstrating functional specification among closely related members of that toxin family during evolution. Our study presents a molecular mechanism of gene regulation by a bacterial toxin that adapts bacterial physiology to enhanced toxin production. IMPORTANCE: Toxins play a major role in many bacterial diseases. When toxins are produced during infection, the bacteria need to balance this energy-consuming task with other physiological processes. However, it has remained poorly understood how toxins can impact gene expression to trigger such adaptations. We found that specific members of a toxin family in the major human pathogen Staphylococcus aureus have evolved for gene regulatory purposes. These specific toxins interact with a DNA-binding regulator protein to enable production of the toxin export machinery and ascertain that the machinery is not expressed when toxins are not made and it is not needed. Our study gives mechanistic insight into how toxins may directly adjust bacterial physiology to times of toxin production during infection.


Assuntos
Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Mapeamento de Interação de Proteínas , Transporte Proteico
13.
Mol Cell ; 61(3): 329-340, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26805573

RESUMO

Intramembrane proteases signal by releasing proteins from the membrane, but despite their importance, their enzymatic mechanisms remain obscure. We probed rhomboid proteases with reversible, mechanism-based inhibitors that allow precise kinetic analysis and faithfully mimic the transition state structurally. Unexpectedly, inhibition by peptide aldehydes is non-competitive, revealing that in the Michaelis complex, substrate does not contact the catalytic center. Structural analysis in a membrane revealed that all extracellular loops of rhomboid make stabilizing interactions with substrate, but mainly through backbone interactions, explaining rhomboid's broad sequence selectivity. At the catalytic site, the tetrahedral intermediate lies covalently attached to the catalytic serine alone, with the oxyanion stabilized by unusual tripartite interactions with the side chains of H150, N154, and the backbone of S201. We also visualized unexpected substrate-enzyme interactions at the non-essential P2/P3 residues. These "extra" interactions foster potent rhomboid inhibition in living cells, thereby opening avenues for rational design of selective rhomboid inhibitors.


Assuntos
Aldeídos/farmacologia , Antibacterianos/farmacologia , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Terapia de Alvo Molecular , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Aldeídos/química , Aldeídos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Catálise , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Estabilidade Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Cell ; 155(6): 1270-81, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315097

RESUMO

Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 µM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications.


Assuntos
Membrana Celular/metabolismo , Endopeptidases/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteólise , Sequência de Aminoácidos , Bactérias/enzimologia , Membrana Celular/química , Membrana Celular/enzimologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
15.
Genome Biol ; 12(10): 231, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22035660

RESUMO

Rhomboid proteases are the largest family of enzymes that hydrolyze peptide bonds within the cell membrane. Although discovered to be serine proteases only a decade ago, rhomboid proteases are already considered to be the best understood intramembrane proteases. The presence of rhomboid proteins in all domains of life emphasizes their importance but makes their evolutionary history difficult to chart with confidence. Phylogenetics nevertheless offers three guiding principles for interpreting rhomboid function. The near ubiquity of rhomboid proteases across evolution suggests broad, organizational roles that are not directly essential for cell survival. Functions have been deciphered in only about a dozen organisms and fall into four general categories: initiating cell signaling in animals, facilitating bacterial quorum sensing, regulating mitochondrial homeostasis, and dismantling adhesion complexes of parasitic protozoa. Although in no organism has the full complement of rhomboid function yet been elucidated, links to devastating human disease are emerging rapidly, including to Parkinson's disease, type II diabetes, cancer, and bacterial and malaria infection. Rhomboid proteases are unlike most proteolytic enzymes, because they are membrane-immersed; understanding how the membrane immersion affects their function remains a key challenge.


Assuntos
Proteínas de Ligação a DNA/química , Drosophila/enzimologia , Endopeptidases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Animais , Membrana Celular/química , Membrana Celular/enzimologia , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Endopeptidases/classificação , Endopeptidases/genética , Ativação Enzimática , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Homeostase , Humanos , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Mitocôndrias/química , Mitocôndrias/genética , Filogenia , Proteólise , Percepção de Quorum , Transdução de Sinais , Relação Estrutura-Atividade
16.
Arch Biochem Biophys ; 478(1): 18-25, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18662664

RESUMO

Galectin-1 (Gal1) and galectin-3 (Gal3) are two members of a family of carbohydrate-binding proteins that are found in the nucleus and that participate in pre-mRNA splicing assayed in a cell-free system. When nuclear extracts (NE) of HeLa cells were subjected to adsorption on a fusion protein containing glutathione S-transferase (GST) and Gal3, the general transcription factor II-I (TFII-I) was identified by mass spectrometry as one of the polypeptides specifically bound. Lactose and other saccharide ligands of the galectins inhibited GST-Gal3 pull-down of TFII-I while non-binding carbohydrates failed to yield the same effect. Similar results were also obtained using GST-Gal1. Site-directed mutants of Gal1, expressed and purified as GST fusion proteins, were compared with the wild-type (WT) in three assays: (a) binding to asialofetuin-Sepharose as a measure of the carbohydrate-binding activity; (b) pull-down of TFII-I from NE; and (c) reconstitution of splicing in NE depleted of galectins as a test of the in vitro splicing activity. The binding of GST-Gal1(N46D) to asialofetuin-Sepharose was less than 10% of that observed for GST-Gal1(WT), indicating that the mutant was deficient in carbohydrate-binding activity. In contrast, both GST-Gal1(WT) and GST-Gal1(N46D) were equally efficient in pull-down of TFII-I and in reconstitution of splicing activity in the galectin-depleted NE. Moreover, while the splicing activity of the wild-type protein can be inhibited by saccharide ligands, the carbohydrate-binding deficient mutant was insensitive to such inhibition. Together, all of the results suggest that the carbohydrate-binding and the splicing activities of Gal1 can be dissociated and therefore, saccharide-binding, per se, is not required for the splicing activity.


Assuntos
Carboidratos/química , Galectina 1/química , Processamento Alternativo , Núcleo Celular/metabolismo , Galectina 3/metabolismo , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica , Proteômica/métodos , RNA/química , Proteínas Recombinantes/química , Spliceossomos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA