Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 846: 157505, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870592

RESUMO

We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.


Assuntos
Ecossistema , Lagos , Biomassa , China , Estudos Longitudinais , Plantas
2.
Environ Sci Pollut Res Int ; 29(54): 81760-81776, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35737264

RESUMO

In this work, second pyrolysis oil-based drill cutting ash (OBDCA-sp) was modified using NaOH and cetyltrimethylammonium bromide (CTAB), respectively. The modified OBDCA-sp was used as the novel adsorbent for adsorption of tetracycline (TC) in aqueous solutions. The original and modified OBDCA-sp were characterized by SEM, XRD, FTIR, zeta potential analysis, contact angle, and BET. The maximum theoretical adsorption quantity (45 ℃) for TC was calculated as 1.7 mg/g using CTAB-OBDCA-sp as the adsorbent. The adsorption isotherm of TC on OBDCA-sp was fitted well with Freundlich model and the adsorption kinetic was illustrated by pseudo-second-order model. Neutral condition was favorable for the adsorption of TC. The result of regeneration experiment indicated the reusability of OBDCA-sp. The hydrogen bonding was the possible mechanism for TC adsorption. This paper developed the novel surface modification methods of OBDCA-sp and provided an approach for the resource utilization of OBDCA-sp as an environmental functional material.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Cetrimônio , Hidróxido de Sódio , Tetraciclina , Antibacterianos , Cinética , Concentração de Íons de Hidrogênio
3.
Chemosphere ; 298: 134236, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288180

RESUMO

The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Bentonita/química , Sedimentos Geológicos/química , Lagos/química , Fósforo/química , Poluentes Químicos da Água/análise
4.
J Environ Manage ; 287: 112308, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706092

RESUMO

The effects of clay mineral bentonite on the growth process of submerged macrophyte V. spiralis and sediment microenvironment were investigated in the study for the first time, aiming to determine whether it is suitable for application in the field of ecological restoration. The growth index, and physiological and biochemical index of V. spiralis in the experiments were measured once a month, and the changes of rhizosphere microorganisms and physicochemical properties of sediments were also studied at the same time. The results demonstrated that bentonite can effectively promote the growth of V. spiralis. The treatment groups of RB1/1 and MB1/5 (the mass ratios of bentonite to sediment were 1/1 and 1/5, respectively.) showed the best V. spiralis growth promotion rates which were 18.78%, and 11.79%, respectively. The highest microbial diversity and abundance existed in group of RB10 (the mass ratio of sediment to bentonite was 10/1), in which the OTUs, Shannon, Chao and Ace were 1521.0, 5.20, 1712.26, and 1686.31, respectively. Bentonite was conducive to the propagation of rhizosphere microorganisms, and further changed the physical and chemical properties of the sediment microenvironment. The nutrient elements dissolved from bentonite may be one of the main reasons that promoted the growth of V. spiralis. The purpose of this result is to prove that bentonite can be further applied as sediment improver and growing media in ecological restoration projects in eutrophic shallow lakes.


Assuntos
Bentonita , Sedimentos Geológicos , Lagos , Minerais , Fósforo , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA