Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350588

RESUMO

This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.


Assuntos
Ramnose , Streptococcus mutans , Ramnose/análise , Polissacarídeos/análise , Glucanos/química , Parede Celular/química
2.
Bioelectrochemistry ; 151: 108374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36750011

RESUMO

Iontophoresis, a non-invasive application of a constant low-intensity electric current, is a promising strategy to accelerate wound healing. Although its mechanisms are not yet fully elucidated, part of its action seems related to inhibiting bacteria growth. This work aimed to investigate the antimicrobial effect of iontophoresis using Staphylococcus epidermidis and Escherichia coli strains, Gram-positive and Gram-negative bacteria, respectively. Anodic iontophoresis was applied to each bacterial suspension using Ag/AgCl electrodes, and bacteria viability was evaluated after 24 h incubation by counting colony-forming units. A Quality-by-Design approach was performed to assess the influence of the iontophoresis' intensity and application time on bacterial viability. Cell morphology was evaluated by scanning electron microscopy. Iontophoresis showed antimicrobial effects on the Gram-positive bacteria only at 5 mA and 60 min application. However, a linear relationship was observed between intensity and application time for the Gram-negative one, causing drastic morphological changes and up to 98 % death. The cell wall of Gram-negative bacteria seems more susceptible to disorganization triggered by iontophoresis-induced ion transport than Gram-positive ones. Therefore, anodic iontophoresis can be a powerful ally in controlling Gram-negative bacteria proliferation in wounds.


Assuntos
Bactérias Gram-Negativas , Iontoforese , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli
3.
Sci Rep ; 10(1): 19285, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159142

RESUMO

Topical ophthalmic antibiotics show low efficacy due to the well-known physiological defense mechanisms of the eye, which prevents the penetration of exogenous substances. Here, we aimed to incorporate besifloxacin into liposomes containing amines as positively charged additives and to evaluate the influence of this charge on drug delivery in two situations: (i) iontophoretic and (ii) passive treatments. Hypothesis are (i) charge might enhance the electromigration component upon current application improving penetration efficiency for a burst drug delivery, and (ii) positive charge might prolong formulation residence time, hence drug penetration. Liposomes elaborated with phosphatidylcholine (LP PC) or phosphatidylcholine and spermine (LP PC: SPM) were stable under storage at 6 ºC for 30 days, showed mucoadhesive characteristics, and were non-irritant, according to HET-CAM tests. Electron paramagnetic resonance spectroscopy measurements showed that neither the drug nor spermine incorporations produced evident alterations in the fluidity of the liposome's membranes, which retained their structural stability even under iontophoretic conditions. Mean diameter and zeta potential were 177.2 ± 2.7 nm and - 5.7 ± 0.3 mV, respectively, for LP PC; and 175.4 ± 1.9 nm and + 19.5 ± 1.0 mV, respectively, for LP PC:SPM. The minimal inhibitory concentration (MIC) and the minimal bactericide concentration (MBC) of the liposomes for P. aeruginosa showed values lower than the commercial formulation (Besivance). Nevertheless, both formulations presented a similar increase in permeability upon the electric current application. Hence, liposome charge incorporation did not prove to be additionally advantageous for iontophoretic therapy. Passive drug penetration was evaluated through a novel in vitro ocular model that simulates the lacrimal flow and challenges the formulation resistance in the passive delivery situation. As expected, LP PC: SPM showed higher permeation than the control (Besivance). In conclusion, besifloxacin incorporation into positively charged liposomes improved passive topical delivery and can be a good strategy to improve topical ophthalmic treatments.


Assuntos
Azepinas , Olho/metabolismo , Fluoroquinolonas , Administração Oftálmica , Animais , Azepinas/química , Azepinas/farmacocinética , Azepinas/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacocinética , Fluoroquinolonas/farmacologia , Lipossomos , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacocinética , Fosfatidilcolinas/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...