Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Technol Health Care ; 32(S1): 241-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759053

RESUMO

BACKGROUND: With the advent of artificial intelligence technology, machine learning algorithms have been widely used in the area of disease prediction. OBJECTIVE: Cardiovascular disease (CVD) seriously jeopardizes human health worldwide, thereby needing the establishment of an effective CVD prediction model that can be of great significance for controlling the risk of the disease and safeguarding the physical and mental health of the population. METHODS: Considering the UCI heart disease dataset as an example, initially, a single machine learning prediction model was constructed. Subsequently, six methods such as Pearson, chi-squared, RFE and LightGBM were comprehensively used for the feature screening. On the basis of the base classifiers, Soft Voting fusion and Stacking fusion was carried out to build a prediction model for cardiovascular diseases, in order to realize an early warning and disease intervention for high-risk populations. To address the data imbalance problem, the SMOTE method was adopted to process the data set, and the prediction effect of the model was analyzed using multi-dimensional and multi-indicators. RESULTS: In the single classifier model, the MLP algorithm performed optimally on the preprocessed heart disease dataset. After feature selection, five features eliminated. The ENSEM_SV algorithm that combines the base classifiers to determine the prediction results by soft voting on the results of the classifiers achieved the optimal value on five metrics such as Accuracy, Jaccard_Score, Hamm_Loss, AUC, etc., and the AUC value reached 0.951. The RF, ET, GBDT, and LGB algorithms were employed in the first stage sub-model composed of base classifiers. The AB algorithm was selected as the second stage model, and the ensemble algorithm ENSEM_ST, obtained by Stacking fusion of the two stages exhibited the best performance on 7 indicators such as Accuracy, Sensitivity, F1_Score, Mathew_Corrcoef, etc., and the AUC reached 0.952. Furthermore, a comparison of the algorithms' classification effects based on different training set occupancy was carried out. The results indicated that the prediction performance of both the fusion models was better than the single models, and the overall effect of ENSEM_ST fusion was stronger than the ENSEM_SV fusion. CONCLUSIONS: The fusion model established in this study improved the overall classification accuracy and stability of the model to a significant extent. It has a good application value in the predictive analysis of CVD diagnosis, and can provide a valuable reference in the disease diagnosis and intervention strategies.


Assuntos
Algoritmos , Doenças Cardiovasculares , Aprendizado de Máquina Supervisionado , Humanos , Doenças Cardiovasculares/diagnóstico
2.
Technol Health Care ; 31(S1): 397-408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066939

RESUMO

BACKGROUND: With the advent of 5G and the era of Big Data, the rapid development of medical information technology around the world, the massive application of electronic medical records and cases, and the digitization of medical equipment and instruments, a large amount of data has accumulated in the database system of hospitals, which includes clinical diagnosis data and hospital management data. OBJECTIVE: This study aimed to examine the classification effects of different machine learning algorithms on medical datasets so as to better explore the value of machine learning methods in aiding medical diagnosis. METHODS: The classification datasets of four different medical fields in the University of California Irvine machine learning database were used as the research object. Also, six categories of classification models based on the Bayesian theorem idea, integrated learning idea, and rule-based and tree-based idea were constructed using the Weka platform. RESULTS: The between-group experiments showed that the Random Forest algorithm achieved the best results on the Indian liver disease patient dataset (ILPD), delivery cardiotocography (CADG), and lymphatic tractography (LYMP) datasets, followed by Bagging and partition and regression tree. In the within-group algorithm comparison experiments, the Bagging algorithm achieved better results than other algorithms based on the integration idea for 11 metrics on all datasets, mainly focusing on 2 binary datasets. Logit Boost had only 7 metrics with significant performance, and the best algorithm was Rotation Forest, with 28 metrics achieving optimal values. Among the algorithms based on tree ideas, the logistic model tree algorithm achieved optimal results on all metrics on the mammographic dataset (MAGR). The classification performance of BFTree, J48, and Random Tree was poor on each dataset. The best algorithm was Random Forest on the ILPD, CADG, and LYMP datasets with 27 metrics reaching the optimum. CONCLUSION: Machine learning algorithms have good application value in disease prediction and can provide a reference basis for disease diagnosis.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Teorema de Bayes , Algoritmo Florestas Aleatórias , Registros Eletrônicos de Saúde
3.
Front Bioeng Biotechnol ; 9: 698390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291042

RESUMO

As one of the most vulnerable cancers of women, the incidence rate of breast cancer in China is increasing at an annual rate of 3%, and the incidence is younger. Therefore, it is necessary to conduct research on the risk of breast cancer, including the cause of disease and the prediction of breast cancer risk based on historical data. Data based statistical learning is an important branch of modern computational intelligence technology. Using machine learning method to predict and judge unknown data provides a new idea for breast cancer diagnosis. In this paper, an improved optimization algorithm (GSP_SVM) is proposed by combining genetic algorithm, particle swarm optimization and simulated annealing with support vector machine algorithm. The results show that the classification accuracy, MCC, AUC and other indicators have reached a very high level. By comparing with other optimization algorithms, it can be seen that this method can provide effective support for decision-making of breast cancer auxiliary diagnosis, thus significantly improving the diagnosis efficiency of medical institutions. Finally, this paper also preliminarily explores the effect of applying this algorithm in detecting and classifying breast cancer in different periods, and discusses the application of this algorithm to multiple classifications by comparing it with other algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA