Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 179: 108907, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033680

RESUMO

Multidrug-resistant (MDR) Staphylococcus aureus infections significantly threaten global health. With rising resistance to current antibiotics and limited solutions, the urgent discovery of new, effective, and affordable antibacterials with low toxicity is imperative to combat diverse MDR S. aureus strains. Hence, in this study, we introduce an in silico phytochemical-based approach for discovering novel antibacterial agents, underscoring the potential of computational approaches in therapeutic discovery. Glucomoringin Isothiocyanate (GMG-ITC) from Moringa oleifera Lam. is one of the phytochemical compounds with several biological activities, including antimicrobial, anti-inflammatory, and antioxidant activities, and is also effective against S. aureus. This study focuses on screening GMG-ITC as a potential drug candidate to combat MDR S. aureus infections through a molecular docking approach. Moreover, interaction amino acid analysis, in silico pharmacokinetics, compound target prediction, pathway enrichment analysis and molecular dynamics (MD) simulations were conducted for further investigation. Molecular docking and interaction analysis showed strong binding affinity towards S. aureus lipase, dihydrofolate reductase, and other MDR S. aureus proteins, including penicillin-binding protein 2a, MepR, D-Ala:D-Ala ligase, and RPP TetM, through hydrophilic and hydrophobic interactions. GMG-ITC also showed a strong binding affinity to cyclooxygenase-2 and FAD-dependent NAD(P)H oxidase, suggesting that it is a potential anti-inflammatory and antioxidant candidate that may eliminate inflammation and oxidative stress associated with S. aureus infections. MD simulations validated the stability of the GMG-ITC molecular interactions determined by molecular docking. In silico pharmacokinetic analysis highlights its potency as a drug candidate, showing strong absorption, distribution, and excretion properties in combination with low toxicity. It acts as an active protease and enzyme inhibitor with moderate activity against GPCR ligands, ion channels, nuclear receptor ligands, and kinases. Enrichment analysis further elucidated its involvement in important biological, molecular, and cellular functions with potential therapeutic applications in diseases like cancer, hepatitis B, and influenza. Results suggest that GMG-ITC is an effective antibacterial agent that could treat MDR S. aureus-associated infections.


Assuntos
Antibacterianos , Isotiocianatos , Simulação de Acoplamento Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Isotiocianatos/química , Isotiocianatos/farmacologia , Moringa oleifera/química , Simulação de Dinâmica Molecular , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação por Computador , Humanos
2.
Sci Rep ; 14(1): 5608, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454146

RESUMO

Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.


Assuntos
Monoterpenos Cicloexânicos , Dinitrobenzenos , Óleos Voláteis , Óleos de Plantas , Sulfanilamidas , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Timol/farmacologia , Thymus (Planta)/química , Tetraploidia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia
3.
Heliyon ; 9(12): e22480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107328

RESUMO

Essential oils (EOs) from Indian spices like Elettaria cardamomum (L.) Maton (small green cardamom), Syzygium aromaticum (L.) Merr. & L.M. Perry (clove), Cinnamomum zeylanicum Blume (cinnamon quills), and Cinnamomum tamala (Buch.-Ham.) T. Nees & C. H. Eberm (Indian bay leaves) exhibit a broad spectrum range of biological activity including antibacterial and antifungal activity. Yet, there is a lack of data regarding the antimicrobial activity of their formulations. Also, the link between the antimicrobial effect of individual EO with their chemical composition and molecular interaction with bacterial pathogens has not been systematically explored. Therefore, the objectives of the current study were to evaluate the antimicrobial activity and phytochemical characterization of EOs and to bridge the gap between them through in-silico molecular interactions. The antibacterial activity of EOs of four different spices and their formulations against foodborne pathogens such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was evaluated using the disc volatilization method. The chemical profile of the individual EO was determined through GC-MS analysis and molecular interactions of identified major components with bacterial proteins were carried out through molecular docking studies. All EOs and their formulations exhibited antibacterial activity ranging from 5.92 to 24.55 mm and 11-23.52 mm, respectively. Among all EOs, cinnamon and formulation C (cardamom: cinnamon- 2:1) exhibited the highest antibacterial activity. The composition of the EOs included sesquiterpenes, monoterpenoids, monoterpenes, and, phenylpropanoids such as (E)-cinnamaldehyde, δ-cadinene, α-copaene, eugenol, caryophyllene, eugenol acetate, methyl eugenol, menthadiene, eucalyptol, α-terpinyl acetate, and sabinene. Furthermore, docking study revealed that the abundant compounds from cinnamon EO mainly α-copaene and δ-cadinene had a high binding affinity towards the bacterial essential proteins which increases the bacterial susceptibility towards cinnamon EO. The selected EOs and their formulations were systematically analysed and they were effective against foodborne pathogens. The current findings suggest the application of these EOs against food pathogens with further research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA