Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0158024, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27352302

RESUMO

Papain-like proteases contain an N-terminal pro-peptide in their zymogen form that is important for correct folding and spatio-temporal regulation of the proteolytic activity of these proteases. Catalytic removal of the pro-peptide is required for the protease to become active. In this study, we have generated three different mutants of papain (I86F, I86L and I86A) by replacing the residue I86 in its pro-peptide region, which blocks the specificity determining S2-subsite of the catalytic cleft of the protease in its zymogen form with a view to investigate the effect of mutation on the catalytic activity of the protease. Steady-state enzyme kinetic analyses of the corresponding mutant proteases with specific peptide substrates show significant alteration of substrate specificity-I86F and I86L have 2.7 and 29.1 times higher kcat/Km values compared to the wild-type against substrates having Phe and Leu at P2 position, respectively, while I86A shows lower catalytic activity against majority of the substrates tested. Far-UV CD scan and molecular mass analyses of the mature form of the mutant proteases reveal similar CD spectra and intact masses to that of the wild-type. Crystal structures of zymogens of I86F and I86L mutants suggest that subtle reorganization of active site residues, including water, upon binding of the pro-peptide may allow the enzyme to achieve discriminatory substrate selectivity and catalytic efficiency. However, accurate and reliable predictions on alteration of substrate specificity require atomic resolution structure of the catalytic domain after zymogen activation, which remains a challenging task. In this study we demonstrate that through single amino acid substitution in pro-peptide, it is possible to modify the substrate specificity of papain and hence the pro-peptide of a protease can also be a useful target for altering its catalytic activity/specificity.


Assuntos
Domínio Catalítico , Precursores Enzimáticos/química , Mutação , Papaína/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Papaína/genética , Papaína/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Especificidade por Substrato
2.
PLoS One ; 8(5): e62619, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671614

RESUMO

Ervatamins (A, B and C) are papain-like cysteine proteases from the plant Ervatamia coronaria. Among Ervatamins, Ervatamin-C is a thermostable protease, but it shows lower catalytic efficiency. In contrast, Ervatamin-A which has a high amino acid sequence identity (∼90%) and structural homology (Cα rmsd 0.4 Å) with Ervatamin-C, has much higher catalytic efficiency (∼57 times). From the structural comparison of Ervatamin-A and -C, two residues Thr32 and Tyr67 in the catalytic cleft of Ervatamin-A have been identified whose contributions for higher activity of Ervatamin-A are established in our earlier studies. In this study, these two residues have been introduced in Ervatamin-C by site directed mutagenesis to enhance the catalytic efficiency of the thermostable protease. Two single mutants (S32T and A67Y) and one double mutant (S32T/A67Y) of Ervatamin-C have been generated and characterized. All the three mutants show ∼ 8 times higher catalytic efficiency (k cat/K m) than the wild-type. The thermostability of all the three mutant enzymes remained unchanged. The double mutant does not achieve the catalytic efficiency of the template enzyme Ervatamin-A. By modeling the structure of the double mutant and probing the role of active site residues by docking a substrate, the mechanistic insights of higher activity of the mutant protease have been addressed. The in-silico study demonstrates that the residues beyond the catalytic cleft also influence the substrate binding and positioning of the substrate at the catalytic centre, thus controlling the catalytic efficiency of an enzyme.


Assuntos
Papaína/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/química , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Leucina/análogos & derivados , Leucina/química , Magnoliopsida/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Papaína/química , Proteínas de Plantas/química , Ligação Proteica , Engenharia de Proteínas , Proteólise , Homologia Estrutural de Proteína
3.
FEBS J ; 278(17): 3012-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707922

RESUMO

The amino acid sequence of ervatamin-C, a thermostable cysteine protease from a tropical plant, revealed an additional 24-amino-acid extension at its C-terminus (CT). The role of this extension peptide in zymogen activation, catalytic activity, folding and stability of the protease is reported. For this study, we expressed two recombinant forms of the protease in Escherichia coli, one retaining the CT-extension and the other with it truncated. The enzyme with the extension shows autocatalytic zymogen activation at a higher pH of 8.0, whereas deletion of the extension results in a more active form of the enzyme. This CT-extension was not found to be cleaved during autocatalysis or by limited proteolysis by different external proteases. Molecular modeling and simulation studies revealed that the CT-extension blocks some of the substrate-binding unprimed subsites including the specificity-determining subsite (S2) of the enzyme and thereby partially occludes accessibility of the substrates to the active site, which also corroborates the experimental observations. The CT-extension in the model structure shows tight packing with the catalytic domain of the enzyme, mediated by strong hydrophobic and H-bond interactions, thus restricting accessibility of its cleavage sites to the protease itself or to the external proteases. Kinetic stability analyses (T(50) and t(1/2) ) and refolding experiments show similar thermal stability and refolding efficiency for both forms. These data suggest that the CT-extension has an inhibitory role in the proteolytic activity of ervatamin-C but does not have a major role either in stabilizing the enzyme or in its folding mechanism.


Assuntos
Cisteína Endopeptidases/metabolismo , Precursores Enzimáticos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Biocatálise , Simulação por Computador , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Leucina/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA