Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 18(10): 1495-1504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29532761

RESUMO

BACKGROUND: One of the most promising strategies to develop multi-targeted anticancer therapeutics is to introduce to the structure of a potential drug two or more pharmacophores (functional groups or structural fragments), which have antiproliferative, proapoptotic or antimetastatic properties acting via different mechanisms. OBJECTIVE: To design, synthesize and perform screening of a novel hybrid anticancer compound. METHOD: A novel hybrid compound 4-[(E)-2-phenylethenesulfonamido]-N-hydroxybutanamide, combining butanehydroxamate and styrenesulfonamide moieties, was designed, synthesized and investigated as a potent antimetastatic and antiproliferative agent. The structure and purity of the synthesized compound were confirmed by 1H NMR, 13C NMR, LC/MS spectroscopy and elemental analysis. The compound was screened for the anticancer activity in vitro against HeLa and in vivo against Lewis lung carcinoma tumor, using an antitumor metalloenzyme inhibitor GM6001 (Ilomastat, Galardin) and Pifithrin-µ as control anticancer agents. RESULTS: It was found that the application of our compound resulted in a high fraction of apoptotic cells in the cell population, along with disruption in the cell cycle profile manifested as arrest of proliferative phases. Furthermore, changes of the morphological properties (i.e., an enhancement of adhesive properties and reduction of the nuclear-to-cytoplasm ratio) were found. The in vivo screening revealed that the compound significantly inhibited the metastasizing process that was manifested by a reduction in the number and volume of metastases. CONCLUSIONS: The obtained results demonstrate that our compound can serve as a base for further structure optimization in order to design new highly-effective antimetastatic and antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Células HeLa , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Relação Estrutura-Atividade
2.
Croat Med J ; 58(2): 118-127, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28409495

RESUMO

AIM: To purify the platelet aggregation inhibitor from Echis multisquamatis snake venom (PAIEM) and characterize its effect on platelet aggregation and HeLa cell proliferation. METHODS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) were used for PAIEM identification. Platelet aggregation in the presence of PAIEM was studied on aggregometer Solar-AP2110. The changes of shape and granularity of platelets in the presence of PAIEM were studied on flow cytometer COULTER EPICS XL, and degranulation of platelets was estimated using spectrofluorimetry. Indirect enzyme-linked immunosorbent assay was used for the determination of target of PAIEM on platelet surface. An assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to evaluate the effect of PAIEM on the proliferation of HeLa cells in cell culture. RESULTS: The molecular weight of the protein purified from Echis multisquamatis venom was 14.9 kDa. Half-maximal inhibitory concentration (IC50) of PAIEM needed to inhibit adenosine diphosphate (ADP)-induced platelet aggregation was 7 µM. PAIEM did not affect thrombin- or ADP-induced platelet activation, but it did prevent binding of the anti-IIb antibody to glycoprotein IIb/IIIa (GPIIbIIIa)-receptor of adhered platelets and inhibited the viability of HeLa cells by 54%. CONCLUSION: As a member of the disintegrin family, PAIEM inhibited platelet aggregation and cell proliferation possibly by blocking integrin-mediated interactions. However, it did not impair cellular signaling causing any changes in platelet shape and granularity and did not affect ADP-induced platelet degranulation. This disintegrin was shown to be a potent inhibitor of integrin-mediated cellular interactions including platelet aggregation or cancer cell proliferation.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Venenos de Serpentes/farmacologia , Viperidae , Animais , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Peso Molecular , Venenos de Serpentes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA