Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120312, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453402

RESUMO

Advanced oxidation processes are commonly considered one of the most effective techniques to degrade refractory organic pollutants, but the limitation of a single process usually makes it insufficient to achieve the desired treatment. This work introduces, for the first time, a highly-efficient coupled advanced oxidation process, namely Electro-Oxidation-Persulfate-Electro-Fenton (EO-PS-EF). Leveraging the EO-PS-EF tri-coupling system, diverse contaminants can be highly efficiently removed with the help of reactive hydroxyl and sulfate radicals generated via homogeneous and heterogeneous bi-catalysis, as certified by radical quenching and electron spin resonance. Concerning degradation of tetracycline (TC), the EO-PS-EF system witnessed a fast pseudo-first-order reaction kinetic constant of 2.54 × 10-3 s-1, ten times that of a single EO system and three-to-four times that of a binary system (EO-PS or EO-EF). In addition, critical parameters (e.g., electrolyte, pH and temperature) are systematically investigated. Surprisingly, after 100 repetitive trials TC removal can still reach 100% within 30 min and no apparent morphological changes to electrode materials were observed, demonstrating its long-term stability. Finally, its universality was demonstrated with effective degradation of diverse refractory contaminants (i.e., antibiotics, dyes and pesticides).


Assuntos
Antibacterianos , Poluentes Químicos da Água , Radical Hidroxila , Tetraciclina , Sulfatos , Catálise , Poluentes Químicos da Água/análise , Oxirredução , Peróxido de Hidrogênio
2.
Chem Commun (Camb) ; 54(24): 3053-3056, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29513314

RESUMO

A strong relationship between the surface structure and the redox activity of Li2O2 is visualized directly using scanning electrochemical cell microscopy, employing a dual-barrel nanopipette containing a unique gel polymer electrolyte. These measurements reveal considerable local heterogeneity with significantly enhanced electrochemical activity at toroidal Li2O2 structures when compared to the conformal layer that is usually formed on the cathode of Li-O2 batteries.

3.
ACS Appl Mater Interfaces ; 8(44): 30458-30466, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27739301

RESUMO

There is great interest in finding and developing new, efficient, and more active electrocatalytic materials. Surface modification of highly oriented pyrolytic graphite, through the introduction of surface "blisters", is demonstrated to result in an electrode material with greatly enhanced electrochemical activity. The increased electrochemical activity of these blisters, which are produced by electro-oxidation in HClO4, is revealed through the use of scanning electrochemical cell microscopy (SECCM), coupled with complementary techniques (optical microscopy, field emission-scanning electron microscopy, Raman spectroscopy, and atomic force microscopy). The use of a linear sweep voltammetry (LSV)-SECCM scan regime allows for dynamic electrochemical mapping, where a voltammogram is produced at each pixel, from which movies consisting of spatial electrochemical currents, at a series of applied potentials, are produced. The measurements reveal significantly enhanced electrocatalytic activity at blisters when compared to the basal planes, with a significant cathodic shift in the onset potential of the hydrazine electro-oxidation reaction. The improved electrochemical activity of the hollow structure of blistered graphite could be explained by the increased adsorption of protonated hydrazine at oxygenated defect sites, the ease of ion-solvent intercalation/deintercalation, and the reduced susceptibility to N2 nanobubble attachment (as a product of the reaction). This study highlights the capability of electrochemistry to tailor the surface structure of graphite and presents a new electrocatalyst for hydrazine electro-oxidation.

4.
Phys Chem Chem Phys ; 17(39): 26394-402, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26388328

RESUMO

Voltammetric studies of dopamine (DA) oxidation on pristine and acid-treated single-walled carbon nanotube (SWNT) network electrodes were undertaken in order to investigate both the effect of network density and acid treatment times on the voltammetric characteristics for DA oxidation and the susceptibility of the electrodes to fouling. Through careful control of catalysed chemical vapour deposition growth parameters, multiply interconnected and randomly oriented SWNT networks of two significantly different densities were grown (high density, HD, coverage ≫10 µm length of SWNT per µm(-2) and low density, LD, coverage = 5 (±1) µmSWNTµm(-2)). Acid treatment was performed to provide materials with different electrochemical properties and SWNT coverage, as determined by field emission-scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy. A high concentration of DA (100 µM) was deliberately employed to accelerate the fouling phenomenon associated with DA oxidation in order to evaluate the lifetime of the electrodes. HD pristine SWNT networks were found to promote more facile electron transfer (ET) and were less susceptible to blocking, compared to LD pristine SWNT networks. Acid treatment resulted in both a further enhancement of the ET rate and a reduction in susceptibility towards electrode fouling. However, lengthy acid treatment detrimentally affected ET, due to a decrease in network density and significant damage to the SWNT network structure. These studies highlight the subtle interplay between SWNT coverage and degree of acid functionalisation when seeking to achieve the optimal SWNT electrode for the voltammetric detection of DA.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/instrumentação , Nanotubos de Carbono/química , Neurotransmissores/análise , Eletrodos , Desenho de Equipamento , Nanotubos de Carbono/ultraestrutura , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA