Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(7): 721-726, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169896

RESUMO

Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise-like photonic approaches-to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb interactions, which provide a direct route to entangle the orbital or spin degree of freedom. However, controlled interaction of flying electrons at the single-particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realize a controlled-phase gate for in-flight quantum manipulations.

2.
Nat Commun ; 10(1): 4557, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594936

RESUMO

Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

3.
Nat Commun ; 8(1): 1710, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167429

RESUMO

The electron wave function experiences a phase modification at coherent transmission through a quantum dot. This transmission phase undergoes a characteristic shift of π when scanning through a Coulomb blockade resonance. Between successive resonances either a transmission phase lapse of π or a phase plateau is theoretically expected to occur depending on the parity of quantum dot states. Despite considerable experimental effort, this transmission phase behaviour has remained elusive for a large quantum dot. Here we report on transmission phase measurements across such a large quantum dot hosting hundreds of electrons. Scanning the transmission phase along 14 successive resonances with an original two-path interferometer, we observe both phase lapses and plateaus. We demonstrate that quantum dot deformation alters the sequence of phase lapses and plateaus via parity modifications of the involved quantum dot states. Our findings set a milestone towards an comprehensive understanding of the transmission phase of quantum dots.

4.
J Phys Chem C Nanomater Interfaces ; 119(48): 27162-27172, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26692915

RESUMO

The work function of metal substrates can be easily tuned, for instance, by adsorbing layers of molecular electron donors and acceptors. In this work, we discuss the possibility of changing the donor/acceptor mixing ratio reversibly after adsorption by choosing a donor/acceptor pair that is coupled via a redox reaction and that is in equilibrium with a surrounding gas phase. We discuss such a situation for the example of tetrafluoro-1,4-benzenediol (TFBD)/tetrafluoro-1,4-benzoquinone (TFBQ), adsorbed on Cu(111) and Ag(111) surfaces. We use density functional theory and ab initio thermodynamics to show that arbitrary TFBD/TFBQ mixing ratios can be set using hydrogen pressures attainable in low to ultrahigh vacuum. Adjusting the mixing ratio allows modifying the work function over a range of about 1 eV. Finally, we contrast single-species submonolayers with mixed layers to discuss why the resulting inhomogeneities in the electrostatic energy above the surface have different impacts on the interfacial level alignment and the work function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA