Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277128

RESUMO

Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. Over this time global vaccine programs have been introduced, contributing to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, the Omicron BA.1 variant emerged, with substantially different genetic differences and clinical effects from other variants of concern (VOC). This variant demonstrated higher numbers of polymorphisms in the gene encoding the Spike (S) protein, and it has displaced the previously dominant Delta variant. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5 has now started to dominate globally, with the potential to supplant BA.2. To address the relative threat of BA.5, we determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a well characterised, genetically engineered ACE2/TMPRSS2 cell line. We then assessed the impact of BA.5 infection on humoral neutralisation in vitro, in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. The infectivity of virus in primary swabs and expanded isolates revealed that whilst BA.1 and BA.2 are attenuated through ACE2/TMPRSS2, BA.5 infectivity is equivalent to that of an early 2020 circulating clade and has greater sensitivity to the TMPRSS2 inhibitor Nafamostat. As with BA.1, we observed BA.5 to significantly reduce neutralisation titres across all donors. Concentrated pooled human IgG from convalescent and vaccinated donors had greater breadth of neutralisation, although the potency was still reduced 7-fold with BA.5. Of all therapeutic antibodies tested, we observed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab when neutralising a Clade A versus BA.5 isolate. These results have implications for ongoing tracking and management of Omicron waves globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA