Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(25): 17802-11, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24811167

RESUMO

The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células HeLa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética
2.
J Biol Chem ; 285(20): 15016-15026, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20223826

RESUMO

How most apoptotic stimuli trigger mitochondrial dysfunction remains to be resolved. We screened the entire Bcl-2 network for its involvement in DNA damage-induced apoptosis in HeLa cells. Although the anti-apoptotic member Bcl-xL served as a major suppressor, apoptosis initiated only when both Mcl-1 and Bcl-xL were eliminated. The pro-apoptotic members Bak, Bad, Bim, and Noxa were required for apoptosis induced by DNA damaging agents camptothecin and UV. We, therefore, used a His-tagged Bcl-xL expression system to capture the relevant BH3-only proteins that bind to Bcl-xL in response to DNA damage. Surprisingly, unlike Bad and Bim, which bound Bcl-xL constitutively, Noxa became "Mcl-1-free" and interacted with Bcl-xL after DNA damage but not after death receptor engagement. Similar observations were also made in A431 cells. Importantly, this induced interaction caused cytochrome c release and apoptosis and was directly inhibited by Mcl-1, a protein eliminated or inactivated after DNA damage. These results suggest that the loss/inactivation of Mcl-1 in conjunction with an induced Noxa/Bcl-xL interaction may serve as a trigger for mitochondrial dysfunction during DNA damage-induced apoptosis.


Assuntos
Dano ao DNA , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Linhagem Celular , Citocromos c/metabolismo , Células HeLa , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Biol Chem ; 285(2): 1384-92, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19880508

RESUMO

The apoptosis gateway protein Bax normally exists in the cytosol as a globular shaped monomer composed of nine alpha-helices. During apoptosis, Bax translocates to the mitochondria, forms homo-oligomers, and subsequently induces mitochondrial damage. The mechanism of Bax mitochondrial translocation remains unclear. Among the nine alpha-helices of Bax, helices 4, 5, 6, and 9 are capable of targeting a heterologous protein to mitochondria. However, only helices 6 and 9 can independently direct the oligomerized Bax to the mitochondria. Although Bax mitochondrial translocation can still proceed with mutations in either helix 6 or helix 9, combined mutations completely abolished mitochondrial targeting in response to activating signals. Using a proline mutagenesis scanning analysis, we demonstrated that conformational changes were sufficient to cause Bax to move from the cytosol to the mitochondria. Moreover, we found that homo-oligomerization of Bax contributed to its mitochondrial translocation. These results suggest that Bax is targeted to the mitochondria through the exposure of one or both of the two functional mitochondrial targeting sequences in a conformational change-driven and homo-oligomerization-aided process.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Multimerização Proteica , Sinais Direcionadores de Proteínas/fisiologia , Proteína X Associada a bcl-2/metabolismo , Animais , Citosol/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Estrutura Quaternária de Proteína/fisiologia , Estrutura Secundária de Proteína/fisiologia , Transporte Proteico/fisiologia , Proteína X Associada a bcl-2/genética
4.
Genes Dev ; 21(15): 1937-48, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671092

RESUMO

Homo-oligomerization of Bax (or Bak) has been hypothesized to be responsible for cell death through the mitochondria-dependent apoptosis pathway. However, partly due to a lack of structural information on the Bax homo-oligomerization and apoptosis inducing domain(s), this hypothesis has remained difficult to test. In this study, we identified a three-helix unit, comprised of the BH3 (helix 2) and BH1 domains (helix 4 and helix 5), as the homo-oligomerization domain of Bax. When targeted to mitochondria, this minimum oligomerization unit induced apoptosis in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (DKO). Strikingly, the central helix of Bax (helix 5), when replacing the corresponding helix (helix 5) of Bcl-xL, an anti-apoptotic Bcl-2 family protein structurally homologous to Bax, converted Bcl-xL into a Bax-like molecule capable of forming oligomers and causing apoptosis in the DKO cells. Finally, a series of systematic mutagenesis analyses revealed that homo-oligomerization is both necessary and sufficient for the apoptotic activity of Bax. These results suggest that active Bax causes mitochondrial damage through homo-oligomers of a three-helix functional unit.


Assuntos
Apoptose/fisiologia , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/fisiologia , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA