Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(40): 22956-22962, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026372

RESUMO

We investigate with in situ surface X-ray diffraction (SXRD) and X-ray reflectivity (XRR) experiments the cathodic stability of an ultrathin single-crystalline IrO2(110) film with a regular array of mesoscopic rooflike structures that is supported on a RuO2(110)/Ru(0001) template. It turns out that the planarity of the single-crystalline IrO2(110) film is lost in that IrO2(110) oxide domains delaminate at a cathodic potential of -0.18 V. Obviously, the electrolyte solution is able to reach the RuO2(110) layer presumably through the surface grain boundaries of the IrO2(110) layer. Subsequently, the single-crystalline RuO2(110) structure-directing template is reduced to amorphous hydrous RuO2, with the consequence that the IrO2(110) film loses partly its adhesion to the template. From in situ XRR experiments we find that the IrO2(110) film does not swell upon cathodic polarization down to -0.18 V, while from in situ SXRD experiments, the lattice constants of IrO2(110) are shown to be not affected. The rooflike mesostructure of the IrO2(110) flakes remains intact after cathodic polarization to -0.18 V, evidencing that the crystallinity of IrO2(110) is retained.

2.
J Phys Chem Lett ; 11(21): 9057-9062, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33045835

RESUMO

Down to a cathodic potentials of -1.20 V versus the reversible hydrogen electrode, the structure of IrO2(110) electrodes supported by TiO2(110) is found to be stable by in situ synchrotron-based X-ray diffraction. Such high cathodic potentials should lead to reduction to metallic Ir (Pourbaix diagram). From the IrO2 lattice parameters, determined during cathodic polarization in a H2SO4 electrolyte solution (pH 0.4), it is estimated that the unit cell volume increases by 1% due likely to proton incorporation, which is supported by the lack of significant swelling of the IrO2(110) film derived from X-ray reflectivity experiments. Ex situ X-ray photoelectron spectroscopy suggests that protons are incorporated into the IrO2(110) lattice below -1.0 V, although Ir remains exclusively in the IV+ oxidation state down to -1.20 V. Obviously, further hydrogenation of the lattice oxygen of IrO2(110) toward water is suppressed for kinetic reasons and hints at a rate-determining chemical step that cannot be controlled by the electrode potential.

3.
Nanoscale Adv ; 1(12): 4764-4771, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133116

RESUMO

Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.

4.
RSC Adv ; 8(34): 18980-18991, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35539633

RESUMO

Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions.

5.
Phys Chem Chem Phys ; 18(16): 10850-5, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27039829

RESUMO

We study the structure-function relationship of alumina supported platinum during the formation of ammonia from nitrogen oxide and dihydrogen by employing in situ X-ray absorption and Fourier transform infrared spectroscopy. Particular focus has been directed towards the effect of oxygen on the reaction as a model system for emerging technologies for passive selective catalytic reduction of nitrogen oxides. The suppressed formation of ammonia observed as the feed becomes net-oxidizing is accompanied by a considerable increase in the oxidation state of platinum as well as the formation of surface nitrates and the loss of NH-containing surface species. In the presence of (excess) oxygen, the ammonia formation is proposed to be limited by weak interaction between nitrogen oxide and the oxidized platinum surface. This leads to a slow dissociation rate of nitrogen oxide and thus low abundance of the atomic nitrogen surface species that can react with the adsorbed hydrogen species. In this case the consumption of hydrogen through the competing water formation reaction and decomposition/oxidation of ammonia are of less importance for the net ammonia formation.

6.
Nat Commun ; 6: 7076, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953006

RESUMO

Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 µm) and temporal (15 µs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes.

7.
Rev Sci Instrum ; 86(3): 033112, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832216

RESUMO

An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 mln/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25-500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al2O3 powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al2O3 and 2% Ag - Al2O3 powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al2O3 monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA