Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(32): 22988-23003, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39040703

RESUMO

In natural water bodies, humic acid (HA), generated during the chlorination disinfection process at water treatment plants, can produce halogenated disinfection by-products, increasing the risk to drinking water safety and posing a threat to human health. Effectively removing HA from natural waters is a critical focus of environmental research. This study established a synergistic ultraviolet/peroxymonosulfate (UV/PMS) system to remove HA from water. It compared the efficacy of various UV/advanced oxidation processes (AOPs) on HA degradation, and assessed the influence of different water sources, initial pH, oxidant concentration, and anions (HCO3 -, Cl-, NO3 -) on HA degradation. The degradation mechanism of HA by the UV/PMS process was also investigated. Results showed that under the conditions of 3 mmol L-1 PMS concentration, 10 mg L-1 HA concentration, initial solution pH of 7, and a reaction time of 240 minutes, the mineralization rate of HA by UV/PMS reached 94.15%. The pseudo-first-order kinetic constant (k obs) was 0.01034 and the single-electric energy (EE/O) was 0.0157 kW h m-3, indicating superior HA removal efficiency compared to other systems. Common anions (HCO3 -, Cl-, NO3 -) in water were found to inhibit the degradation of HA, and acidic conditions were more conducive to HA removal, with the optimal pH being 3. Free radical quenching experiments showed that both sulfate radical (SO4 -˙) and hydroxyl radical (˙OH) radicals were involved in HA degradation, with SO4 -˙ being the primary oxidant and ˙OH as the auxiliary species. Analyses using 3D-excitation-emission matrix (EEM), parallel factor analysis (PARAFAC), specific fluorescence index, and absorbance demonstrated that UV/PMS technology could effectively degrade HA in water. This study provides theoretical references for further research on the removal of HA and other organic substances using UV/PMS technology.

2.
Polymers (Basel) ; 15(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765631

RESUMO

The hydrophobic nature of inorganic zeolite particles plays a crucial role in the efficacy of mixed matrix membranes (MMMs) for the separation of trichloroethylene (TCE) through pervaporation. This study presents a novel approach to further augment the hydrophobicity of ZSM-5. The ZSM-5 zeolite molecular sieve was subjected to modification using three different silane coupling agents, namely, n-octyltriethoxysilane (OTES), γ-methacryloxypropyltrimethoxysilane (KH-570), and γ-aminopropyltriethoxysilane (KH-550). The water contact angles of the resulting OTES@ZSM-5, KH-570@ZSM-5, and KH-550@ZSM-5 particles exhibited significant increases from 97.2° to 112.8°, 109.1°, and 102.7°, respectively, thereby indicating a notable enhancement in hydrophobicity. Subsequently, mixed matrix membranes (MMMs) were fabricated by incorporating the aforementioned silane-modified ZSM-5 particles into polydimethylsiloxane (PDMS), leading to a considerable improvement in the adsorption selectivity of these membranes towards trichloroethylene (TCE). The findings indicate that the PDMS membrane with a 20 wt.% OTES@ZSM-5 particle loading exhibits superior pervaporation performance. When subjected to a temperature of 30 °C, flow rate of 100 mL/min, and vacuum of 30 Kpa, the separation factor and total flux of a 3 × 10-7 wt.% TCE solution reach 328 and 155 gm-2·h-1, respectively. In comparison to the unmodified ZSM-5/PDMS membrane, the separation factor demonstrates a 41% increase, while the TCE flux experiences a 6% increase. Consequently, this approach effectively enhances the pervaporation separation capabilities of the PDMS membrane for TCE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA