Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 143: 103756, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39243487

RESUMO

Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polß). Polß-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polß-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polß-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polß C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polß-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polß-DPC processing. For Polß with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polß. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polß-DPC and prevented Polß-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polß-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polß-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polß or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.

2.
Nature ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261729

RESUMO

The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.

3.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152168

RESUMO

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Assuntos
Proteína BRCA2 , Replicação do DNA , DNA de Cadeia Simples , DNA , Recombinação Homóloga , Mutação , Rad51 Recombinase , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/química , Humanos , DNA/metabolismo , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Homeostase , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Domínios Proteicos , Linhagem Celular Tumoral , Dano ao DNA , Complexo de Endopeptidases do Proteassoma
4.
Sci Adv ; 10(29): eadm9577, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028815

RESUMO

Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.


Assuntos
Androgênios , Neoplasias da Próstata , Estruturas R-Loop , RNA Polimerase II , Receptores Androgênicos , Humanos , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/genética , Transcrição Gênica , Quebras de DNA de Cadeia Dupla , Sítio de Iniciação de Transcrição , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Ativação Transcricional
5.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645048

RESUMO

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase ß (Polß), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polß. Required for Polß foci formation, TRIP12 regulates Polß involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polß affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polß-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

6.
Cancers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254819

RESUMO

O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.

7.
Cell Rep ; 37(5): 109917, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731617

RESUMO

Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase ß (Polß) and XRCC1 to DNA lesion sites identifies a role for Polß in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polß's dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polß and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polß abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA de Neoplasias/metabolismo , NAD/metabolismo , Neoplasias/enzimologia , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Células A549 , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA de Neoplasias/genética , Humanos , Cinética , Microscopia Confocal , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Sirtuínas/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
8.
Nucleic Acids Res ; 47(12): 6269-6286, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287140

RESUMO

Protein-protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein-protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase ß (Polß), we find that mutation of this surface threonine residue impacts critical Polß protein-protein interactions. We show that proteasome-mediated degradation of Polß is regulated by both ubiquitin-dependent and ubiquitin-independent processes via unique protein-protein interactions. The ubiquitin-independent proteasome pathway regulates the stability of Polß in the cytosol via interaction between Polß and NAD(P)H quinone dehydrogenase 1 (NQO1) in an NADH-dependent manner. Conversely, the interaction of Polß with the scaffold protein X-ray repair cross complementing 1 (XRCC1) plays a role in the localization of Polß to the nuclear compartment and regulates the stability of Polß via a ubiquitin-dependent pathway. Further, we find that oxidative stress promotes the dissociation of the Polß/NQO1 complex, enhancing the interaction of Polß with XRCC1. Our results reveal that somatic mutations such as T304I in Polß impact critical protein-protein interactions, altering the stability and sub-cellular localization of Polß and providing mechanistic insight into how key protein-protein interactions regulate cellular responses to stress.


Assuntos
DNA Polimerase beta/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Linhagem Celular Tumoral , Cromatina/enzimologia , Neoplasias do Colo/genética , DNA Polimerase beta/química , DNA Polimerase beta/genética , Estabilidade Enzimática , Humanos , Mutação , NAD/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
9.
Proc Natl Acad Sci U S A ; 112(28): 8602-7, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124145

RESUMO

Free radical attack on the C1' position of DNA deoxyribose generates the oxidized abasic (AP) site 2-deoxyribonolactone (dL). Upon encountering dL, AP lyase enzymes such as DNA polymerase ß (Polß) form dead-end, covalent intermediates in vitro during attempted DNA repair. However, the conditions that lead to the in vivo formation of such DNA-protein cross-links (DPC), and their impact on cellular functions, have remained unknown. We adapted an immuno-slot blot approach to detect oxidative Polß-DPC in vivo. Treatment of mammalian cells with genotoxic oxidants that generate dL in DNA led to the formation of Polß-DPC in vivo. In a dose-dependent fashion, Polß-DPC were detected in MDA-MB-231 human cells treated with the antitumor drug tirapazamine (TPZ; much more Polß-DPC under 1% O2 than under 21% O2) and even more robustly with the "chemical nuclease" 1,10-copper-ortho-phenanthroline, Cu(OP)2. Mouse embryonic fibroblasts challenged with TPZ or Cu(OP)2 also incurred Polß-DPC. Nonoxidative agents did not generate Polß-DPC. The cross-linking in vivo was clearly a result of the base excision DNA repair pathway: oxidative Polß-DPC depended on the Ape1 AP endonuclease, which generates the Polß lyase substrate, and they required the essential lysine-72 in the Polß lyase active site. Oxidative Polß-DPC had an unexpectedly short half-life (∼ 30 min) in both human and mouse cells, and their removal was dependent on the proteasome. Proteasome inhibition under Cu(OP)2 treatment was significantly more cytotoxic to cells expressing wild-type Polß than to cells with the lyase-defective form. That observation underscores the genotoxic potential of oxidative Polß-DPC and the biological pressure to repair them.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , DNA/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Oxirredução
10.
Nat Commun ; 5: 5513, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25423885

RESUMO

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase ß (Polß) and XRCC1 is thought to facilitate repair by recruiting Polß to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polß. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polß and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Linhagem Celular , Dano ao DNA , DNA Polimerase beta/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Modelos Moleculares , Ligação Proteica , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
11.
Mutat Res ; 741-742: 1-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23500083

RESUMO

Bis-electrophiles including dibromoethane and epibromohydrin can react with O(6)-alkylguanine-DNA alkyltransferase (AGT) and form AGT-DNA crosslinks in vitro and in vivo. The presence of human AGT (hAGT) paradoxically increases the mutagenicity and cytotoxicity of bis-electrophiles in cells. Here we establish a bacterial system to study the repair mechanism and cellular responses to DNA-protein crosslinks (DPCs) in vivo. Results show that both nucleotide excision repair (NER) and homologous recombination (HR) pathways can process hAGT-DNA crosslinks with HR playing a dominant role. Mutation spectra show that HR has no strand preference but NER favors processing of the DPCs in the transcribed strand; UvrA, UvrB and Mfd can interfere with small size DPCs but only UvrA can interfere with large size DPCs in the transcribed strand processed by HR. Further, we found that DPCs at TA deoxynucleotide sites are very inefficiently processed by NER and the presence of NER can interfere with these DNA lesions processed by HR. These data indicate that NER and HR can process DPCs cooperatively and competitively and NER processes DPCs with base and strand preference. Therefore, the formation of hAGT-DNA crosslinks can be a plausible and specific system to study the repair mechanism and effects of DPCs precisely in vivo.


Assuntos
Reagentes de Ligações Cruzadas , Reparo do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Recombinação Homóloga , Dano ao DNA , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Mutação/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Recombinação Genética
12.
PLoS One ; 6(3): e17862, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21448280

RESUMO

An siRNA screen has identified several proteins throughout the base excision repair (BER) pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins.


Assuntos
Reparo do DNA/genética , Lentivirus/fisiologia , Transdução de Sinais/genética , Integração Viral/genética , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Dano ao DNA , DNA Complementar/genética , DNA Viral/genética , Deleção de Genes , Infecções por HIV/genética , Humanos , Infecções por Lentivirus/genética , Camundongos , Transcrição Reversa/genética , Fatores de Tempo
13.
Org Biomol Chem ; 8(19): 4414-26, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20714665

RESUMO

O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.


Assuntos
Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilantes/farmacologia , Animais , Bussulfano/farmacologia , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Desoxiguanosina/síntese química , Humanos , Mutação , Desnaturação de Ácido Nucleico , O(6)-Metilguanina-DNA Metiltransferase/genética , Ácidos Sulfônicos/farmacologia
14.
J Biol Chem ; 285(11): 8185-95, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20026607

RESUMO

O(6)-Alkylguanine-DNA alkyltransferase (AGT) plays a major role in repair of the cytotoxic and mutagenic lesion O(6)-methylguanine (m(6)G) in DNA. Unlike the Escherichia coli alkyltransferase Ogt that also repairs O(4)-methylthymine (m(4)T) efficiently, the human AGT (hAGT) acts poorly on m(4)T. Here we made several hAGT mutants in which residues near the cysteine acceptor site were replaced by corresponding residues from Ogt to investigate the basis for the inefficiency of hAGT in repair of m(4)T. Construct hAGT-03 (where hAGT sequence -V(149)CSSGAVGN(157)- was replaced with the corresponding Ogt -I(143)GRNGTMTG(151)-) exhibited enhanced m(4)T repair activity in vitro compared with hAGT. Three AGT proteins (hAGT, hAGT-03, and Ogt) exhibited similar protection from killing by N-methyl-N'-nitro-N-nitrosoguanidine and caused a reduction in m(6)G-induced G:C to A:T mutations in both nucleotide excision repair (NER)-proficient and -deficient Escherichia coli strains that lack endogenous AGTs. hAGT-03 resembled Ogt in totally reducing the m(4)T-induced T:A to C:G mutations in NER-proficient and -deficient strains. Surprisingly, wild type hAGT expression caused a significant but incomplete decrease in NER-deficient strains but a slight increase in T:A to C:G mutation frequency in NER-proficient strains. The T:A to C:G mutations due to O(4)-alkylthymine formed by ethylating and propylating agents were also efficiently reduced by either hAGT-03 or Ogt, whereas hAGT had little effect irrespective of NER status. These results show that specific alterations in the hAGT active site facilitate efficient recognition and repair of O(4)-alkylthymines and reveal damage-dependent interactions of base and nucleotide excision repair.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA/fisiologia , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Timina/metabolismo , Alquilação/fisiologia , Domínio Catalítico , Dano ao DNA/fisiologia , Escherichia coli/genética , Etano/metabolismo , Humanos , Metano/metabolismo , Mutagênese/fisiologia , O(6)-Metilguanina-DNA Metiltransferase/química , Propano/metabolismo , Estrutura Terciária de Proteína
15.
J Biol Chem ; 284(34): 22601-10, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19531487

RESUMO

O(6)-alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O(6)-methyldeoxyguanosine (O(6)-Me-dG) adducts placed within frequently mutated 5'-CG-3' dinucleotides of the p53 tumor suppressor gene. O(6)-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O(6)-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O(6)-Me-dG were affected by neighboring 5-methylcytosine ((Me)C) in a sequence-dependent manner. AGT repair of O(6)-Me-dG adducts placed within 5'-CG-3' dinucleotides of p53 codons 245 and 248 was hindered when (Me)C was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O(6)-Me-dG repair by AGT. The effects of (Me)C located immediately 5' and in the base paired position to O(6)-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that (Me)C influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.


Assuntos
Citosina/metabolismo , Reparo do DNA/fisiologia , Fosfatos de Dinucleosídeos/metabolismo , Guanina/análogos & derivados , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Códon/genética , Metilação de DNA , Reparo do DNA/genética , Fosfatos de Dinucleosídeos/genética , Ensaio de Desvio de Mobilidade Eletroforética , Genes p53/genética , Guanina/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Raios Ultravioleta
16.
Biochemistry ; 47(50): 13404-17, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19053272

RESUMO

Putrescine (1,4-diaminobutane) activates the autoprocessing and decarboxylation reactions of human S-adenosylmethionine decarboxylase (AdoMetDC), a critical enzyme in the polyamine biosynthetic pathway. In human AdoMetDC, putrescine binds in a buried pocket containing acidic residues Asp174, Glu178, and Glu256. The pocket is away from the active site but near the dimer interface; however, a series of hydrophilic residues connect the putrescine binding site and the active site. Mutation of these acidic residues modulates the effects of putrescine. D174N, E178Q, and E256Q mutants were expressed and dialyzed to remove putrescine and studied biochemically using X-ray crystallography, UV-CD spectroscopy, analytical ultracentrifugation, and ITC binding studies. The results show that the binding of putrescine to the wild type dimeric protein is cooperative. The D174N mutant does not bind putrescine, and the E178Q and E256Q mutants bind putrescine weakly with no cooperativity. The crystal structure of the mutants with and without putrescine and their complexes with S-adenosylmethionine methyl ester were obtained. Binding of putrescine results in a reorganization of four aromatic residues (Phe285, Phe315, Tyr318, and Phe320) and a conformational change in the loop 312-320. The loop shields putrescine from the external solvent, enhancing its electrostatic and hydrogen bonding effects. The E256Q mutant with putrescine added shows an alternate conformation of His243, Glu11, Lys80, and Ser229, the residues that link the active site and the putrescine binding site, suggesting that putrescine activates the enzyme through electrostatic effects and acts as a switch to correctly orient key catalytic residues.


Assuntos
Adenosilmetionina Descarboxilase/química , Adenosilmetionina Descarboxilase/metabolismo , Putrescina/química , Putrescina/metabolismo , Cristalografia por Raios X , Dimerização , Ativação Enzimática/fisiologia , Humanos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Eletricidade Estática
17.
J Med Chem ; 51(22): 7144-53, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18973327

RESUMO

O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.


Assuntos
Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Simulação por Computador , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
18.
Biochemistry ; 47(41): 10892-903, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18803403

RESUMO

O (6)-Alkylguanine-DNA alkyltransferase (AGT) plays an important role by protecting cells from alkylating agents. This reduces the frequency of carcinogenesis and mutagenesis initiated by such agents, but AGT also provides a major resistance mechanism to some chemotherapeutic drugs. To improve our understanding of the AGT-mediated repair reaction and our understanding of the spectrum of repairable damage, we have studied the ability of AGT to repair interstrand cross-link DNA damage where the two DNA strands are joined via the guanine- O (6) in each strand. An oligodeoxyribonucleotide containing a heptane cross-link was repaired with initial formation of an AGT-oligo complex and further reaction of a second AGT molecule yielding a hAGT dimer and free oligo. However, an oligodeoxyribonucleotide with a butane cross-link was a very poor substrate for AGT-mediated repair, and only the first reaction that forms an AGT-oligo complex could be detected. Models of the reaction of these substrates in the AGT active site show that the DNA duplex is forced apart locally to repair the first guanine. This reaction is greatly hindered with the butane cross-link, which is mostly buried in the active site pocket and limited in conformational flexibility. This limitation also prevents the adoption of a conformation for the second reaction to repair the AGT-oligo complex. These results are consistent with the postulated mechanism of AGT repair that involves DNA binding and flipping of the substrate nucleotide and indicate that hAGT can repair some types of interstrand cross-link damage.


Assuntos
Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Dano ao DNA , Metilases de Modificação do DNA/química , Enzimas Reparadoras do DNA/química , Eletroforese em Gel de Poliacrilamida , Humanos , Modelos Moleculares , Proteínas Supressoras de Tumor/química
19.
Chem Res Toxicol ; 21(4): 787-95, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18324787

RESUMO

The antitumor activity of chemotherapeutic nitrogen mustards including chlorambucil, cyclophosphamide, and melphalan is commonly attributed to their ability to induce DNA-DNA cross-links by consecutive alkylation of two nucleophilic sites within the DNA duplex. DNA-protein cross-linking by nitrogen mustards is not well characterized, probably because of its inherent complexity and the insufficient sensitivity of previous methodologies. If formed, DNA-protein conjugates are likely to contribute to both target and off-target cytotoxicity of nitrogen mustard drugs. Here, we show that the DNA repair protein, O (6)-alkylguanine DNA alkyltransferase (AGT), can be readily cross-linked to DNA in the presence of nitrogen mustards. Both chlorambucil and mechlorethamine induced the formation of covalent conjugates between (32)P-labeled double-stranded oligodeoxynucleotides and recombinant human AGT protein, which were detected by SDS-PAGE. Capillary HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis of AGT that had been treated with the guanine half-mustards of chlorambucil or mechlorethamine revealed the ability of the protein to form either one or two cross-links to guanine. C145A AGT (a variant containing a single point mutation in the protein's active site) was found capable of forming a single guanine conjugate, while cross-linking was virtually abolished upon treatment of the C145A/C150S AGT double mutant with the guanine half-mustards. HPLC-ESI (+)-MS/MS sequencing of tryptic peptides obtained from the wild-type AGT protein that had been treated with nitrogen mustards in the presence of DNA confirmed that the cross-linking took place between the N7 position of guanine in DNA and two active site residues within the AGT protein (Cys (145) and Cys (150)). The exact chemical structures of AGT-DNA cross-links induced by chlorambucil and mechlorethamine were identified as N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)- p-aminophenylbuyric acid and N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)methylamine, respectively, based upon HPLC-MS/MS analysis of protein hydrolysates in parallel with the corresponding amino acid conjugates prepared synthetically. Mechlorethamine-induced AGT-DNA conjugates were isolated from protein extracts of AGT-expressing CHO cells but not control cells, demonstrating that nitrogen mustards can cross-link the AGT protein to DNA in the presence of other nuclear proteins. Because AGT is overexpressed in many tumor types, further investigations of the potential role of AGT-DNA cross-linking in the antitumor and mutagenic activity of antitumor nitrogen mustards are warranted.


Assuntos
Antineoplásicos/farmacologia , DNA/metabolismo , Compostos de Mostarda Nitrogenada/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Reparo do DNA
20.
Biochem Pharmacol ; 75(3): 618-26, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17996846

RESUMO

The human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) is an important source of resistance to some therapeutic alkylating agents and attempts to circumvent this resistance by the use of hAGT inhibitors have reached clinical trials. Several human polymorphisms in the MGMT gene that encodes hAGT have been described including L84F and the linked double alteration I143V/K178R. We have investigated the inactivation of these variants and the much rarer variant W65C by O(6)-benzylguanine, which is currently in clinical trials, and a number of other second generation hAGT inhibitors that contain folate derivatives (O(4)-benzylfolic acid, the 3' and 5' folate esters of O(6)-benzyl-2'-deoxyguanosine and the folic acid gamma ester of O(6)-(p-hydroxymethyl)benzylguanine). The I143V/K178R variant was resistant to all of these compounds. The resistance was due solely to the I143V change. These results suggest that the frequency of the I143V/K178R variant among patients in the clinical trials with hAGT inhibitors and the correlation with response should be considered.


Assuntos
Inibidores Enzimáticos/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Ensaios Clínicos como Assunto , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA